Goto

Collaborating Authors

 Medda, Giacomo


Unlocking LLMs: Addressing Scarce Data and Bias Challenges in Mental Health

arXiv.org Artificial Intelligence

Large language models (LLMs) have shown promising capabilities in healthcare analysis but face several challenges like hallucinations, parroting, and bias manifestation. These challenges are exacerbated in complex, sensitive, and low-resource domains. Therefore, in this work we introduce IC-AnnoMI, an expert-annotated motivational interviewing (MI) dataset built upon AnnoMI by generating in-context conversational dialogues leveraging LLMs, particularly ChatGPT. IC-AnnoMI employs targeted prompts accurately engineered through cues and tailored information, taking into account therapy style (empathy, reflection), contextual relevance, and false semantic change. Subsequently, the dialogues are annotated by experts, strictly adhering to the Motivational Interviewing Skills Code (MISC), focusing on both the psychological and linguistic dimensions of MI dialogues. We comprehensively evaluate the IC-AnnoMI dataset and ChatGPT's emotional reasoning ability and understanding of domain intricacies by modeling novel classification tasks employing several classical machine learning and current state-of-the-art transformer approaches. Finally, we discuss the effects of progressive prompting strategies and the impact of augmented data in mitigating the biases manifested in IC-AnnoM. Our contributions provide the MI community with not only a comprehensive dataset but also valuable insights for using LLMs in empathetic text generation for conversational therapy in supervised settings.


Improving Fairness in Speaker Recognition

arXiv.org Artificial Intelligence

The human voice conveys unique characteristics of an individual, making voice biometrics a key technology for verifying identities in various industries. Despite the impressive progress of speaker recognition systems in terms of accuracy, a number of ethical and legal concerns has been raised, specifically relating to the fairness of such systems. In this paper, we aim to explore the disparity in performance achieved by state-of-the-art deep speaker recognition systems, when different groups of individuals characterized by a common sensitive attribute (e.g., gender) are considered. In order to mitigate the unfairness we uncovered by means of an exploratory study, we investigate whether balancing the representation of the different groups of individuals in the training set can lead to a more equal treatment of these demographic groups. Experiments on two state-of-the-art neural architectures and a large-scale public dataset show that models trained with demographically-balanced training sets exhibit a fairer behavior on different groups, while still being accurate. Our study is expected to provide a solid basis for instilling beyond-accuracy objectives (e.g., fairness) in speaker recognition.