Mead, Carver
Single Transistor Learning Synapses
Hasler, Paul E., Diorio, Chris, Minch, Bradley A., Mead, Carver
The past few years have produced a number of efforts to design VLSI chips which "learn from experience." The first step toward this goal is developing a silicon analog for a synapse. We have successfully developed such a synapse using only 818 Paul Hasler, Chris Diorio, Bradley A. Minch, Carver Mead
Single Transistor Learning Synapses
Hasler, Paul E., Diorio, Chris, Minch, Bradley A., Mead, Carver
The past few years have produced a number of efforts to design VLSI chips which "learn from experience." The first step toward this goal is developing a silicon analog for a synapse. We have successfully developed such a synapse using only 818 PaulHasler, Chris Diorio, Bradley A. Minch, Carver Mead Drain Gate
A Silicon Axon
Minch, Bradley A., Hasler, Paul E., Diorio, Chris, Mead, Carver
It is well known that axons are neural processes specialized for transmitting information overrelatively long distances in the nervous system. Impulsive electrical disturbances known as action potentials are normally initiated near the cell body of a neuron when the voltage across the cell membrane crosses a threshold. These pulses are then propagated with a fairly stereotypical shape at a more or less constant velocitydown the length of the axon. Consequently, axons excel at precisely preserving the relative timing of threshold crossing events but do not preserve any of the initial signal shape. Information, then, is presumably encoded in the relative timing of action potentials.
A Silicon Axon
Minch, Bradley A., Hasler, Paul E., Diorio, Chris, Mead, Carver
It is well known that axons are neural processes specialized for transmitting information over relatively long distances in the nervous system. Impulsive electrical disturbances known as action potentials are normally initiated near the cell body of a neuron when the voltage across the cell membrane crosses a threshold. These pulses are then propagated with a fairly stereotypical shape at a more or less constant velocity down the length of the axon. Consequently, axons excel at precisely preserving the relative timing of threshold crossing events but do not preserve any of the initial signal shape. Information, then, is presumably encoded in the relative timing of action potentials.
An Analog VLSI Model of Adaptation in the Vestibulo-Ocular Reflex
DeWeerth, Stephen P., Mead, Carver
The vestibulo-ocular reflex (VOR) is the primary mechanism that controls the compensatory eye movements that stabilize retinal images during rapid head motion. The primary pathways of this system are feed-forward, with inputs from the semicircular canals and outputs to the oculomotor system. Since visual feedback is not used directly in the VOR computation, the system must exploit motor learning to perform correctly. Lisberger(1988) has proposed a model for adapting the VOR gain using image-slip information from the retina. We have designed and tested analog very largescale integrated (VLSI) circuitry that implements a simplified version of Lisberger's adaptive VOR model.
An Analog VLSI Model of Adaptation in the Vestibulo-Ocular Reflex
DeWeerth, Stephen P., Mead, Carver
The vestibulo-ocular reflex (VOR) is the primary mechanism that controls the compensatory eye movements that stabilize retinal images during rapid head motion. The primary pathways of this system are feed-forward, with inputs from the semicircular canals and outputs to the oculomotor system. Since visual feedback is not used directly in the VOR computation, the system must exploit motor learning to perform correctly. Lisberger(1988) has proposed a model for adapting the VOR gain using image-slip information from the retina. We have designed and tested analog very largescale integrated (VLSI) circuitry that implements a simplified version of Lisberger's adaptive VOR model.
An Analog VLSI Model of Adaptation in the Vestibulo-Ocular Reflex
DeWeerth, Stephen P., Mead, Carver
The vestibulo-ocular reflex (VOR) is the primary mechanism that controls the compensatory eye movements that stabilize retinal images duringrapid head motion. The primary pathways of this system are feed-forward, with inputs from the semicircular canals and outputs to the oculomotor system. Since visual feedback is not used directly in the VOR computation, the system must exploit motor learning to perform correctly. Lisberger(1988) has proposed a model for adapting the VOR gain using image-slip information from the retina. We have designed and tested analog very largescale integrated(VLSI) circuitry that implements a simplified version of Lisberger's adaptive VOR model.
Modeling Small Oscillating Biological Networks in Analog VLSI
Ryckebusch, Sylvie, Bower, James M., Mead, Carver
We have used analog VLSI technology to model a class of small oscillating biologicalneural circuits known as central pattern generators (CPG). These circuits generate rhythmic patterns of activity which drive locomotor behaviour in the animal. We have designed, fabricated, and tested a model neuron circuit which relies on many of the same mechanisms as a biological central pattern generator neuron, such as delays and internal feedback. We show that this neuron can be used to build several small circuits based on known biological CPG circuits, and that these circuits produce patterns of output which are very similar to the observed biological patterns. To date, researchers in applied neural networks have tended to focus on mammalian systemsas the primary source of potentially useful biological information.
Modeling Small Oscillating Biological Networks in Analog VLSI
Ryckebusch, Sylvie, Bower, James M., Mead, Carver
We have used analog VLSI technology to model a class of small oscillating biological neural circuits known as central pattern generators (CPG). These circuits generate rhythmic patterns of activity which drive locomotor behaviour in the animal. We have designed, fabricated, and tested a model neuron circuit which relies on many of the same mechanisms as a biological central pattern generator neuron, such as delays and internal feedback. We show that this neuron can be used to build several small circuits based on known biological CPG circuits, and that these circuits produce patterns of output which are very similar to the observed biological patterns. To date, researchers in applied neural networks have tended to focus on mammalian systems as the primary source of potentially useful biological information. However, invertebrate systems may represent a source of ideas in many ways more appropriate, given current levels of engineering sophistication in building neural-like systems, and given the state of biological understanding of mammalian circuits.
Computing Motion Using Resistive Networks
Koch, Christof, Luo, Jin, Mead, Carver, Hutchinson, James
We open our eyes and we "see" the world in all its color, brightness, and movement. Yet, we have great difficulties when trying to endow our machines with similar abilities. In this paper we shall describe recent developments in the theory of early vision which lead from the formulation of the motion problem as an illposed oneto its solution by minimizing certain "cost" functions. These cost or energy functions can be mapped onto simple analog and digital resistive networks. Thus, we shall see how the optical flow can be computed by injecting currents into resistive networks and recording the resulting stationary voltage distribution at each node. These networks can be implemented in cMOS VLSI circuits and represent plausible candidates for biological vision systems. APERTURE PROBLEM AND SMOOTHNESS ASSUMPTION In this study, we use intensity-based schemes for recovering motion.