Goto

Collaborating Authors

 McQuillan, Ian


Classical and Quantum Algorithms for the Deterministic L-system Inductive Inference Problem

arXiv.org Artificial Intelligence

L-systems can be made to model and create simulations of many biological processes, such as plant development. Finding an L-system for a given process is typically solved by hand, by experts, in a massively time-consuming process. It would be significant if this could be done automatically from data, such as from sequences of images. In this paper, we are interested in inferring a particular type of L-system, deterministic context-free L-system (D0L-system) from a sequence of strings. We introduce the characteristic graph of a sequence of strings, which we then utilize to translate our problem (inferring D0L-system) in polynomial time into the maximum independent set problem (MIS) and the SAT problem. After that, we offer a classical exact algorithm and an approximate quantum algorithm for the problem.


Importance of realism in procedurally-generated synthetic images for deep learning: case studies in maize and canola

arXiv.org Artificial Intelligence

Artificial neural networks are often used to identify features of crop plants. However, training their models requires many annotated images, which can be expensive and time-consuming to acquire. Procedural models of plants, such as those developed with Lindenmayer-systems (L-systems) can be created to produce visually realistic simulations, and hence images of plant simulations, where annotations are implicitly known. These synthetic images can either augment or completely replace real images in training neural networks for phenotyping tasks. In this paper, we systematically vary amounts of real and synthetic images used for training in both maize and canola to better understand situations where synthetic images generated from L-systems can help prediction on real images. This work also explores the degree to which realism in the synthetic images improves prediction. We have five different variants of a procedural canola model (these variants were created by tuning the realism while using calibration), and the deep learning results showed how drastically these results improve as the canola synthetic images are made to be more realistic. Furthermore, we see how neural network predictions can be used to help calibrate L-systems themselves, creating a feedback loop.