McLean, Samuel
On Heterogeneous Treatment Effects in Heterogeneous Causal Graphs
Watson, Richard A, Cai, Hengrui, An, Xinming, McLean, Samuel, Song, Rui
Heterogeneity and comorbidity are two interwoven challenges associated with various healthcare problems that greatly hampered research on developing effective treatment and understanding of the underlying neurobiological mechanism. Very few studies have been conducted to investigate heterogeneous causal effects (HCEs) in graphical contexts due to the lack of statistical methods. To characterize this heterogeneity, we first conceptualize heterogeneous causal graphs (HCGs) by generalizing the causal graphical model with confounder-based interactions and multiple mediators. Such confounders with an interaction with the treatment are known as moderators. This allows us to flexibly produce HCGs given different moderators and explicitly characterize HCEs from the treatment or potential mediators on the outcome. We establish the theoretical forms of HCEs and derive their properties at the individual level in both linear and nonlinear models. An interactive structural learning is developed to estimate the complex HCGs and HCEs with confidence intervals provided. Our method is empirically justified by extensive simulations and its practical usefulness is illustrated by exploring causality among psychiatric disorders for trauma survivors.
Exploratory Hidden Markov Factor Models for Longitudinal Mobile Health Data: Application to Adverse Posttraumatic Neuropsychiatric Sequelae
Ge, Lin, An, Xinming, Zeng, Donglin, McLean, Samuel, Kessler, Ronald, Song, Rui
Adverse posttraumatic neuropsychiatric sequelae (APNS) are common among veterans and millions of Americans after traumatic exposures, resulting in substantial burdens for trauma survivors and society. Despite numerous studies conducted on APNS over the past decades, there has been limited progress in understanding the underlying neurobiological mechanisms due to several unique challenges. One of these challenges is the reliance on subjective self-report measures to assess APNS, which can easily result in measurement errors and biases (e.g., recall bias). To mitigate this issue, in this paper, we investigate the potential of leveraging the objective longitudinal mobile device data to identify homogeneous APNS states and study the dynamic transitions and potential risk factors of APNS after trauma exposure. To handle specific challenges posed by longitudinal mobile device data, we developed exploratory hidden Markov factor models and designed a Stabilized Expectation-Maximization algorithm for parameter estimation. Simulation studies were conducted to evaluate the performance of parameter estimation and model selection. Finally, to demonstrate the practical utility of the method, we applied it to mobile device data collected from the Advancing Understanding of RecOvery afteR traumA (AURORA) study.