McLaughlin, Niall
QUB-Cirdan at "Discharge Me!": Zero shot discharge letter generation by open-source LLM
Guo, Rui, Farnan, Greg, McLaughlin, Niall, Devereux, Barry
The BioNLP ACL'24 Shared Task on Streamlining Discharge Documentation aims to reduce the administrative burden on clinicians by automating the creation of critical sections of patient discharge letters. This paper presents our approach using the Llama3 8B quantized model to generate the "Brief Hospital Course" and "Discharge Instructions" sections. We employ a zero-shot method combined with Retrieval-Augmented Generation (RAG) to produce concise, contextually accurate summaries. Our contributions include the development of a curated template-based approach to ensure reliability and consistency, as well as the integration of RAG for word count prediction. We also describe several unsuccessful experiments to provide insights into our pathway for the competition. Our results demonstrate the effectiveness and efficiency of our approach, achieving high scores across multiple evaluation metrics.
Hard-label based Small Query Black-box Adversarial Attack
Park, Jeonghwan, Miller, Paul, McLaughlin, Niall
We consider the hard label based black box adversarial attack setting which solely observes predicted classes from the target model. Most of the attack methods in this setting suffer from impractical number of queries required to achieve a successful attack. One approach to tackle this drawback is utilising the adversarial transferability between white box surrogate models and black box target model. However, the majority of the methods adopting this approach are soft label based to take the full advantage of zeroth order optimisation. Unlike mainstream methods, we propose a new practical setting of hard label based attack with an optimisation process guided by a pretrained surrogate model. Experiments show the proposed method significantly improves the query efficiency of the hard label based black-box attack across various target model architectures. We find the proposed method achieves approximately 5 times higher attack success rate compared to the benchmarks, especially at the small query budgets as 100 and 250.