McLachlan, Scott
Explainable AI: Definition and attributes of a good explanation for health AI
Kyrimi, Evangelia, McLachlan, Scott, Wohlgemut, Jared M, Perkins, Zane B, Lagnado, David A., Marsh, William, Group, the ExAIDSS Expert
Proposals of artificial intelligence (AI) solutions based on increasingly complex and accurate predictive models are becoming ubiquitous across many disciplines. As the complexity of these models grows, transparency and users' understanding often diminish. This suggests that accurate prediction alone is insufficient for making an AI-based solution truly useful. In the development of healthcare systems, this introduces new issues related to accountability and safety. Understanding how and why an AI system makes a recommendation may require complex explanations of its inner workings and reasoning processes. Although research on explainable AI (XAI) has significantly increased in recent years and there is high demand for XAI in medicine, defining what constitutes a good explanation remains ad hoc, and providing adequate explanations continues to be challenging. To fully realize the potential of AI, it is critical to address two fundamental questions about explanations for safety-critical AI applications, such as health-AI: (1) What is an explanation in health-AI? and (2) What are the attributes of a good explanation in health-AI? In this study, we examined published literature and gathered expert opinions through a two-round Delphi study. The research outputs include (1) a definition of what constitutes an explanation in health-AI and (2) a comprehensive list of attributes that characterize a good explanation in health-AI.
The Self-Driving Car: Crossroads at the Bleeding Edge of Artificial Intelligence and Law
McLachlan, Scott, Kyrimi, Evangelia, Dube, Kudakwashe, Fenton, Norman, Schafer, Burkhard
Artificial intelligence (AI) features are increasingly being embedded in cars and are central to the operation of self-driving cars (SDC). There is little or no effort expended towards understanding and assessing the broad legal and regulatory impact of the decisions made by AI in cars. A comprehensive literature review was conducted to determine the perceived barriers, benefits and facilitating factors of SDC in order to help us understand the suitability and limitations of existing and proposed law and regulation. (1) existing and proposed laws are largely based on claimed benefits of SDV that are still mostly speculative and untested; (2) while publicly presented as issues of assigning blame and identifying who pays where the SDC is involved in an accident, the barriers broadly intersect with almost every area of society, laws and regulations; and (3) new law and regulation are most frequently identified as the primary factor for enabling SDC. Research on assessing the impact of AI in SDC needs to be broadened beyond negligence and liability to encompass barriers, benefits and facilitating factors identified in this paper. Results of this paper are significant in that they point to the need for deeper comprehension of the broad impact of all existing law and regulations on the introduction of SDC technology, with a focus on identifying only those areas truly requiring ongoing legislative attention.
Smart Automotive Technology Adherence to the Law: (De)Constructing Road Rules for Autonomous System Development, Verification and Safety
McLachlan, Scott, Neil, Martin, Dube, Kudakwashe, Bogani, Ronny, Fenton, Norman, Schaffer, Burkhard
Driving is an intuitive task that requires skills, constant alertness and vigilance for unexpected events. The driving task also requires long concentration spans focusing on the entire task for prolonged periods, and sophisticated negotiation skills with other road users, including wild animals. These requirements are particularly important when approaching intersections, overtaking, giving way, merging, turning and while adhering to the vast body of road rules. Modern motor vehicles now include an array of smart assistive and autonomous driving systems capable of subsuming some, most, or in limited cases, all of the driving task. The UK Department of Transport's response to the Safe Use of Automated Lane Keeping System consultation proposes that these systems are tested for compliance with relevant traffic rules. Building these smart automotive systems requires software developers with highly technical software engineering skills, and now a lawyer's in-depth knowledge of traffic legislation as well. These skills are required to ensure the systems are able to safely perform their tasks while being observant of the law. This paper presents an approach for deconstructing the complicated legalese of traffic law and representing its requirements and flow. The approach (de)constructs road rules in legal terminology and specifies them in structured English logic that is expressed as Boolean logic for automation and Lawmaps for visualisation. We demonstrate an example using these tools leading to the construction and validation of a Bayesian Network model. We strongly believe these tools to be approachable by programmers and the general public, and capable of use in developing Artificial Intelligence to underpin motor vehicle smart systems, and in validation to ensure these systems are considerate of the law when making decisions.
Medical idioms for clinical Bayesian network development
Kyrimi, Evangelia, Neves, Mariana Raniere, McLachlan, Scott, Neil, Martin, Marsh, William, Fenton, Norman
Bayesian Networks (BNs) are graphical probabilistic models that have proven popular in medical applications. While numerous medical BNs have been published, most are presented fait accompli without explanation of how the network structure was developed or justification of why it represents the correct structure for the given medical application. This means that the process of building medical BNs from experts is typically ad hoc and offers little opportunity for methodological improvement. This paper proposes generally applicable and reusable medical reasoning patterns to aid those developing medical BNs. The proposed method complements and extends the idiom-based approach introduced by Neil, Fenton, and Nielsen in 2000. We propose instances of their generic idioms that are specific to medical BNs. We refer to the proposed medical reasoning patterns as medical idioms. In addition, we extend the use of idioms to represent interventional and counterfactual reasoning. We believe that the proposed medical idioms are logical reasoning patterns that can be combined, reused and applied generically to help develop medical BNs. All proposed medical idioms have been illustrated using medical examples on coronary artery disease. The method has also been applied to other ongoing BNs being developed with medical experts. Finally, we show that applying the proposed medical idioms to published BN models results in models with a clearer structure.