McKeown, Kathleen
Data Caricatures: On the Representation of African American Language in Pretraining Corpora
Deas, Nicholas, Vente, Blake, Ananthram, Amith, Grieser, Jessica A., Patton, Desmond, Kleiner, Shana, Shepard, James, McKeown, Kathleen
With a combination of quantitative experiments, human judgments, and qualitative analyses, we evaluate the quantity and quality of African American Language (AAL) representation in 12 predominantly English, open-source pretraining corpora. We specifically focus on the sources, variation, and naturalness of included AAL texts representing the AAL-speaking community. We find that AAL is underrepresented in all evaluated pretraining corpora compared to US demographics, constituting as little as 0.007% of documents. We also find that more than 25% of AAL texts in C4 may be inappropriate for LLMs to generate and reinforce harmful stereotypes. Finally, we find that most automated language, toxicity, and quality filters are more likely to conserve White Mainstream English (WME) texts over AAL in pretraining corpora.
Layered Insights: Generalizable Analysis of Authorial Style by Leveraging All Transformer Layers
Alshomary, Milad, Varimalla, Nikhil Reddy, Anand, Vishal, McKeown, Kathleen
We propose a new approach for the authorship attribution task that leverages the various linguistic representations learned at different layers of pre-trained transformer-based models. We evaluate our approach on three datasets, comparing it to a state-of-the-art baseline in in-domain and out-of-domain scenarios. We found that utilizing various transformer layers improves the robustness of authorship attribution models when tested on out-of-domain data, resulting in new state-of-the-art results. Our analysis gives further insights into how our model's different layers get specialized in representing certain stylistic features that benefit the model when tested out of the domain.
The Law of Knowledge Overshadowing: Towards Understanding, Predicting, and Preventing LLM Hallucination
Zhang, Yuji, Li, Sha, Qian, Cheng, Liu, Jiateng, Yu, Pengfei, Han, Chi, Fung, Yi R., McKeown, Kathleen, Zhai, Chengxiang, Li, Manling, Ji, Heng
Hallucination is a persistent challenge in large language models (LLMs), where even with rigorous quality control, models often generate distorted facts. This paradox, in which error generation continues despite high-quality training data, calls for a deeper understanding of the underlying LLM mechanisms. To address it, we propose a novel concept: knowledge overshadowing, where model's dominant knowledge can obscure less prominent knowledge during text generation, causing the model to fabricate inaccurate details. Building on this idea, we introduce a novel framework to quantify factual hallucinations by modeling knowledge overshadowing. Central to our approach is the log-linear law, which predicts that the rate of factual hallucination increases linearly with the logarithmic scale of (1) Knowledge Popularity, (2) Knowledge Length, and (3) Model Size. The law provides a means to preemptively quantify hallucinations, offering foresight into their occurrence even before model training or inference. Built on overshadowing effect, we propose a new decoding strategy CoDa, to mitigate hallucinations, which notably enhance model factuality on Overshadow (27.9%), MemoTrap (13.1%) and NQ-Swap (18.3%). Our findings not only deepen understandings of the underlying mechanisms behind hallucinations but also provide actionable insights for developing more predictable and controllable language models.
A General Framework for Inference-time Scaling and Steering of Diffusion Models
Singhal, Raghav, Horvitz, Zachary, Teehan, Ryan, Ren, Mengye, Yu, Zhou, McKeown, Kathleen, Ranganath, Rajesh
Diffusion models produce impressive results in modalities ranging from images and video to protein design and text. However, generating samples with user-specified properties remains a challenge. Recent research proposes fine-tuning models to maximize rewards that capture desired properties, but these methods require expensive training and are prone to mode collapse. In this work, we propose Feynman Kac (FK) steering, an inference-time framework for steering diffusion models with reward functions. FK steering works by sampling a system of multiple interacting diffusion processes, called particles, and resampling particles at intermediate steps based on scores computed using functions called potentials. Potentials are defined using rewards for intermediate states and are selected such that a high value indicates that the particle will yield a high-reward sample. We explore various choices of potentials, intermediate rewards, and samplers. We evaluate FK steering on text-to-image and text diffusion models. For steering text-to-image models with a human preference reward, we find that FK steering a 0.8B parameter model outperforms a 2.6B parameter fine-tuned model on prompt fidelity, with faster sampling and no training. For steering text diffusion models with rewards for text quality and specific text attributes, we find that FK steering generates lower perplexity, more linguistically acceptable outputs and enables gradient-free control of attributes like toxicity. Our results demonstrate that inference-time scaling and steering of diffusion models, even with off-the-shelf rewards, can provide significant sample quality gains and controllability benefits. Code is available at https://github.com/zacharyhorvitz/Fk-Diffusion-Steering .
Summarization of Opinionated Political Documents with Varied Perspectives
Deas, Nicholas, McKeown, Kathleen
Global partisan hostility and polarization has increased, and this polarization is heightened around presidential elections. Models capable of generating accurate summaries of diverse perspectives can help reduce such polarization by exposing users to alternative perspectives. In this work, we introduce a novel dataset and task for independently summarizing each political perspective in a set of passages from opinionated news articles. For this task, we propose a framework for evaluating different dimensions of perspective summary performance. We benchmark 10 models of varying sizes and architectures through both automatic and human evaluation. While recent models like GPT-4o perform well on this task, we find that all models struggle to generate summaries faithful to the intended perspective. Our analysis of summaries focuses on how extraction behavior depends on the features of the input documents.
Enhancing Multimodal Affective Analysis with Learned Live Comment Features
Deng, Zhaoyuan, Ananthram, Amith, McKeown, Kathleen
Live comments, also known as Danmaku, are user-generated messages that are synchronized with video content. These comments overlay directly onto streaming videos, capturing viewer emotions and reactions in real-time. While prior work has leveraged live comments in affective analysis, its use has been limited due to the relative rarity of live comments across different video platforms. To address this, we first construct the Live Comment for Affective Analysis (LCAffect) dataset which contains live comments for English and Chinese videos spanning diverse genres that elicit a wide spectrum of emotions. Then, using this dataset, we use contrastive learning to train a video encoder to produce synthetic live comment features for enhanced multimodal affective content analysis. Through comprehensive experimentation on a wide range of affective analysis tasks (sentiment, emotion recognition, and sarcasm detection) in both English and Chinese, we demonstrate that these synthetic live comment features significantly improve performance over state-of-the-art methods.
StyleDistance: Stronger Content-Independent Style Embeddings with Synthetic Parallel Examples
Patel, Ajay, Zhu, Jiacheng, Qiu, Justin, Horvitz, Zachary, Apidianaki, Marianna, McKeown, Kathleen, Callison-Burch, Chris
Style representations aim to embed texts with similar writing styles closely and texts with different styles far apart, regardless of content. However, the contrastive triplets often used for training these representations may vary in both style and content, leading to potential content leakage in the representations. We introduce StyleDistance, a novel approach to training stronger content-independent style embeddings. We use a large language model to create a synthetic dataset of near-exact paraphrases with controlled style variations, and produce positive and negative examples across 40 distinct style features for precise contrastive learning. We assess the quality of our synthetic data and embeddings through human and automatic evaluations. StyleDistance enhances the content-independence of style embeddings, which generalize to real-world benchmarks and outperform leading style representations in downstream applications. Our model can be found at https://huggingface.co/StyleDistance/styledistance .
MASIVE: Open-Ended Affective State Identification in English and Spanish
Deas, Nicholas, Turcan, Elsbeth, Mejรญa, Ivรกn Pรฉrez, McKeown, Kathleen
In the field of emotion analysis, much NLP research focuses on identifying a limited number of discrete emotion categories, often applied across languages. These basic sets, however, are rarely designed with textual data in mind, and culture, language, and dialect can influence how particular emotions are interpreted. In this work, we broaden our scope to a practically unbounded set of \textit{affective states}, which includes any terms that humans use to describe their experiences of feeling. We collect and publish MASIVE, a dataset of Reddit posts in English and Spanish containing over 1,000 unique affective states each. We then define the new problem of \textit{affective state identification} for language generation models framed as a masked span prediction task. On this task, we find that smaller finetuned multilingual models outperform much larger LLMs, even on region-specific Spanish affective states. Additionally, we show that pretraining on MASIVE improves model performance on existing emotion benchmarks. Finally, through machine translation experiments, we find that native speaker-written data is vital to good performance on this task.
Solving Zebra Puzzles Using Constraint-Guided Multi-Agent Systems
Berman, Shmuel, McKeown, Kathleen, Ray, Baishakhi
Prior research has enhanced the ability of Large Language Models (LLMs) to solve logic puzzles using techniques such as chain-of-thought prompting or introducing a symbolic representation. These frameworks are still usually insufficient to solve complicated logical problems, such as Zebra puzzles, due to the inherent complexity of translating natural language clues into logical statements. We introduce a multi-agent system, ZPS, that integrates LLMs with an off the shelf theorem prover. This system tackles the complex puzzle-solving task by breaking down the problem into smaller, manageable parts, generating SMT (Satisfiability Modulo Theories) code to solve them with a theorem prover, and using feedback between the agents to repeatedly improve their answers. We also introduce an automated grid puzzle grader to assess the correctness of our puzzle solutions and show that the automated grader is reliable by evaluating it in a user-study. Our approach shows improvement in all three LLMs we tested, with GPT-4 showing 166% improvement in the number of fully correct solutions.
STORYSUMM: Evaluating Faithfulness in Story Summarization
Subbiah, Melanie, Ladhak, Faisal, Mishra, Akankshya, Adams, Griffin, Chilton, Lydia B., McKeown, Kathleen
Human evaluation has been the gold standard for checking faithfulness in abstractive summarization. However, with a challenging source domain like narrative, multiple annotators can agree a summary is faithful, while missing details that are obvious errors only once pointed out. We therefore introduce a new dataset, STORYSUMM, comprising LLM summaries of short stories with localized faithfulness labels and error explanations. This benchmark is for evaluation methods, testing whether a given method can detect challenging inconsistencies. Using this dataset, we first show that any one human annotation protocol is likely to miss inconsistencies, and we advocate for pursuing a range of methods when establishing ground truth for a summarization dataset. We finally test recent automatic metrics and find that none of them achieve more than 70% balanced accuracy on this task, demonstrating that it is a challenging benchmark for future work in faithfulness evaluation.