McIlraith, Sheila
Cost-Based Query Optimization via AI Planning
Robinson, Nathan (Australian National University) | McIlraith, Sheila (University of Toronto) | Toman, David (University of Waterloo)
In this paper we revisit the problem of generating query plans using AI automated planning with a view to leveraging significant recent advances in state-of-the-art planning techniques. Our efforts focus on the specific problem of cost-based join-order optimization for conjunctive relational queries, a critical component of production-quality query optimizers. We characterize the general query-planning problem as a delete-free planning problem, and query plan optimization as a context-sensitive cost-optimal planning problem. We propose algorithms that generate high-quality query plans, guaranteeing optimality under certain conditions. Our approach is general, supporting the use of a broad suite of domain-independent and domain-specific optimization criteria. Experimental results demonstrate the effectiveness of AI planning techniques for query plan generation and optimization.
Assumption-Based Planning: Generating Plans and Explanations under Incomplete Knowledge
Davis-Mendelow, Sammy (University of Toronto) | Baier, Jorge A. (Pontificia Universidad Catolica de Chile) | McIlraith, Sheila (University of Toronto)
Many practical planning problems necessitate the generation of a plan under incomplete information about the state of the world. In this paper we propose the notion of Assumption-Based Planning. Unlike conformant planning, which attempts to find a plan under all possible completions of the initial state, an assumption-based plan supports the assertion of additional assumptions about the state of the world, often resulting in high quality plans where no conformant plan exists. We are interested in this paradigm of planning for two reasons: 1) it captures a compelling form of \emph{commonsense planning}, and 2) it is of great utility in the generation of explanations, diagnoses, and counter-examples -- tasks which share a computational core with We formalize the notion of assumption-based planning, establishing a relationship between assumption-based and conformant planning, and prove properties of such plans. We further provide for the scenario where some assumptions are more preferred than others. Exploiting the correspondence with conformant planning, we propose a means of computing assumption-based plans via a translation to classical planning. Our translation is an extension of the popular approach proposed by Palacios and Geffner and realized in their T0 planner. We have implemented our planner, A0, as a variant of T0 and tested it on a number of expository domains drawn from the International Planning Competition. Our results illustrate the utility of this new planning paradigm.
Monitoring a Complez Physical System using a Hybrid Dynamic Bayes Net
Lerner, Uri, Moses, Brooks, Scott, Maricia, McIlraith, Sheila, Koller, Daphne
The Reverse Water Gas Shift system (RWGS) is a complex physical system designed to produce oxygen from the carbon dioxide atmosphere on Mars. If sent to Mars, it would operate without human supervision, thus requiring a reliable automated system for monitoring and control. The RWGS presents many challenges typical of real-world systems, including: noisy and biased sensors, nonlinear behavior, effects that are manifested over different time granularities, and unobservability of many important quantities. In this paper we model the RWGS using a hybrid (discrete/continuous) Dynamic Bayesian Network (DBN), where the state at each time slice contains 33 discrete and 184 continuous variables. We show how the system state can be tracked using probabilistic inference over the model. We discuss how to deal with the various challenges presented by the RWGS, providing a suite of techniques that are likely to be useful in a wide range of applications. In particular, we describe a general framework for dealing with nonlinear behavior using numerical integration techniques, extending the successful Unscented Filter. We also show how to use a fixed-point computation to deal with effects that develop at different time scales, specifically rapid changes occurring during slowly changing processes. We test our model using real data collected from the RWGS, demonstrating the feasibility of hybrid DBNs for monitoring complex real-world physical systems.
Generating Optimal Plans in Highly-Dynamic Domains
Fritz, Christian, McIlraith, Sheila
Generating optimal plans in highly dynamic environments is challenging. Plans are predicated on an assumed initial state, but this state can change unexpectedly during plan generation, potentially invalidating the planning effort. In this paper we make three contributions: (1) We propose a novel algorithm for generating optimal plans in settings where frequent, unexpected events interfere with planning. It is able to quickly distinguish relevant from irrelevant state changes, and to update the existing planning search tree if necessary. (2) We argue for a new criterion for evaluating plan adaptation techniques: the relative running time compared to the "size" of changes. This is significant since during recovery more changes may occur that need to be recovered from subsequently, and in order for this process of repeated recovery to terminate, recovery time has to converge. (3) We show empirically that our approach can converge and find optimal plans in environments that would ordinarily defy planning due to their high dynamics.
Exploiting N-Gram Analysis to Predict Operator Sequences
Muise, Christian (University of Toronto) | McIlraith, Sheila (University of Toronto) | Baier, Jorge A. (University of Toronto) | Reimer, Michael (University of Toronto)
N-gram analysis provides a means of probabilistically predicting the next item in a sequence. Due originally to Shannon, it has proven an effective technique for word prediction in natural language processing and for gene sequence analysis. In this paper, we investigate the utility of n-gram analysis in predicting operator sequences in plans. Given a set of sample plans, we perform n-gram analysis to predict the likelihood of subsequent operators, relative to a partial plan. We identify several ways in which this information might be integrated into a planner. In this paper, we investigate one of these directions in further detail. Preliminary results demonstrate the promise of n-gram analysis as a tool for improving planning performance.
Computing Robust Plans in Continuous Domains
Fritz, Christian (University of Toronto) | McIlraith, Sheila (University of Toronto)
We define the robustness of a sequential plan as the probability that it will execute successfully despite uncertainty in the execution environment. We consider a rich notion of uncertainty over continuous domains that includes stochastic action effects, and changes to state variables due to unpredictable exogenous events. Given a characterization of this uncertainty in terms of probability distributions (e.g., Gaussian) our contributions are two-fold: First, we describe a novel approach to computing the robustness of a plan in the situation calculus, which (a) separates the projection problem from the problem of reasoning about probability, and (b) explicitly reveals the relevance and statistical independence of random variables and events (i.e., conditions that contain random variables). Then, building on this approach, we describe a forward search based planner that generates maximally robust plans, exploiting the revealed structure for speed-up. Preliminary empirical results demonstrate that our approach can realize exponential savings in both time and space compared to the classical sampling approach.
AAAI 2002 Workshops
Blake, Brian, Haigh, Karen, Hexmoor, Henry, Falcone, Rino, Soh, Leen-Kiat, Baral, Chitta, McIlraith, Sheila, Gmytrasiewicz, Piotr, Parsons, Simon, Malaka, Rainer, Krueger, Antonio, Bouquet, Paolo, Smart, Bill, Kurumantani, Koichi, Pease, Adam, Brenner, Michael, desJardins, Marie, Junker, Ulrich, Delgrande, Jim, Doyle, Jon, Rossi, Francesca, Schaub, Torsten, Gomes, Carla, Walsh, Toby, Guo, Haipeng, Horvitz, Eric J., Ide, Nancy, Welty, Chris, Anger, Frank D., Guegen, Hans W., Ligozat, Gerald
The Association for the Advancement of Artificial Intelligence (AAAI) presented the AAAI-02 Workshop Program on Sunday and Monday, 28-29 July 2002 at the Shaw Convention Center in Edmonton, Alberta, Canada. The AAAI-02 workshop program included 18 workshops covering a wide range of topics in AI. The workshops were Agent-Based Technologies for B2B Electronic-Commerce; Automation as a Caregiver: The Role of Intelligent Technology in Elder Care; Autonomy, Delegation, and Control: From Interagent to Groups; Coalition Formation in Dynamic Multiagent Environments; Cognitive Robotics; Game-Theoretic and Decision-Theoretic Agents; Intelligent Service Integration; Intelligent Situation-Aware Media and Presentations; Meaning Negotiation; Multiagent Modeling and Simulation of Economic Systems; Ontologies and the Semantic Web; Planning with and for Multiagent Systems; Preferences in AI and CP: Symbolic Approaches; Probabilistic Approaches in Search; Real-Time Decision Support and Diagnosis Systems; Semantic Web Meets Language Resources; and Spatial and Temporal Reasoning.
AAAI 2002 Workshops
Blake, Brian, Haigh, Karen, Hexmoor, Henry, Falcone, Rino, Soh, Leen-Kiat, Baral, Chitta, McIlraith, Sheila, Gmytrasiewicz, Piotr, Parsons, Simon, Malaka, Rainer, Krueger, Antonio, Bouquet, Paolo, Smart, Bill, Kurumantani, Koichi, Pease, Adam, Brenner, Michael, desJardins, Marie, Junker, Ulrich, Delgrande, Jim, Doyle, Jon, Rossi, Francesca, Schaub, Torsten, Gomes, Carla, Walsh, Toby, Guo, Haipeng, Horvitz, Eric J., Ide, Nancy, Welty, Chris, Anger, Frank D., Guegen, Hans W., Ligozat, Gerald
The Association for the Advancement of Artificial Intelligence (AAAI) presented the AAAI-02 Workshop Program on Sunday and Monday, 28-29 July 2002 at the Shaw Convention Center in Edmonton, Alberta, Canada. The AAAI-02 workshop program included 18 workshops covering a wide range of topics in AI. The workshops were Agent-Based Technologies for B2B Electronic-Commerce; Automation as a Caregiver: The Role of Intelligent Technology in Elder Care; Autonomy, Delegation, and Control: From Interagent to Groups; Coalition Formation in Dynamic Multiagent Environments; Cognitive Robotics; Game-Theoretic and Decision-Theoretic Agents; Intelligent Service Integration; Intelligent Situation-Aware Media and Presentations; Meaning Negotiation; Multiagent Modeling and Simulation of Economic Systems; Ontologies and the Semantic Web; Planning with and for Multiagent Systems; Preferences in AI and CP: Symbolic Approaches; Probabilistic Approaches in Search; Real-Time Decision Support and Diagnosis Systems; Semantic Web Meets Language Resources; and Spatial and Temporal Reasoning.
Reports on the AAAI Spring Symposia (March 1999)
Musliner, David, Pell, Barney, Dobson, Wolff, Goebel, Kai, Vanderbilt, Gautam Biswas, McIlraith, Sheila, Gini, Giuseppina, Koenig, Sven, Zilberstein, Shlomo, Zhang, Weixiong
The Association for the Advancement of Artificial Intelligence, in cooperation, with Stanford University's Department of Com-puter Science, presented the 1999 Spring Symposium Series on 22 to 24 March 1999 at Stanford University. The titles of the seven symposia were (1) Agents with Adjustable Autonomy, (2) Artificial Intelligence and Computer Games, (3) Artificial Intelligence in Equipment Maintenance Service and Support, (4) Hybrid Systems and AI: Modeling, Analysis, and Control of Discrete Continuous Systems, (5) Intelligent Agents in Cyberspace, (6) Predictive Toxicology of Chemicals: Experiences and Impact of AI Tools, and (7) Search Techniques for Problem Solving under Uncertainty and Incomplete Information.
Reports on the AAAI Spring Symposia (March 1999)
Musliner, David, Pell, Barney, Dobson, Wolff, Goebel, Kai, Vanderbilt, Gautam Biswas, McIlraith, Sheila, Gini, Giuseppina, Koenig, Sven, Zilberstein, Shlomo, Zhang, Weixiong
The Association for the Advancement of Artificial Intelligence, in cooperation, with Stanford University's Department of Com-puter Science, presented the 1999 Spring Symposium Series on 22 to 24 March 1999 at Stanford University. The titles of the seven symposia were (1) Agents with Adjustable Autonomy, (2) Artificial Intelligence and Computer Games, (3) Artificial Intelligence in Equipment Maintenance Service and Support, (4) Hybrid Systems and AI: Modeling, Analysis, and Control of Discrete + Continuous Systems, (5) Intelligent Agents in Cyberspace, (6) Predictive Toxicology of Chemicals: Experiences and Impact of AI Tools, and (7) Search Techniques for Problem Solving under Uncertainty and Incomplete Information.