McDonald, David D.
The Location of Words: Evidence from Generation and Spatial Description
McDonald, David D. (Smart Information Flow Technologies (SIFT))
Language processing architectures today are rarely designed to provide psychologically plausible accounts of their representations and algorithms. Engineering decisions dominate. This has led to words being seen as an incidental part of the architecture: the repository of all of languageโs idiosyncratic aspects. Drawing on a body of past and ongoing research by myself and others I have concluded that this view of words is wrong. Words are actually present at the most abstract, pre-linguistic levels of the NLP architecture and that there are phenomena in language use that are best accounted for by assuming that concepts are words.
Project Halo Update--Progress Toward Digital Aristotle
Gunning, David (Vulcan, Inc.) | Chaudhri, Vinay K. (SRI International) | Clark, Peter E. (Boeing Research and Technology) | Barker, Ken (University of Texas at Austin) | Chaw, Shaw-Yi (University of Texas at Austin) | Greaves, Mark (Vulcan, Inc.) | Grosof, Benjamin (Vulcan, Inc.) | Leung, Alice (Raytheon BBN Technologies Corporation) | McDonald, David D. (Raytheon BBN Technologies Corporation) | Mishra, Sunil (SRI International) | Pacheco, John (SRI International) | Porter, Bruce (University of Texas at Austin) | Spaulding, Aaron (SRI International) | Tecuci, Dan (University of Texas at Austin) | Tien, Jing (SRI International)
In the winter, 2004 issue of AI Magazine, we reported Vulcan Inc.'s first step toward creating a question-answering system called "Digital Aristotle." The goal of that first step was to assess the state of the art in applied Knowledge Representation and Reasoning (KRR) by asking AI experts to represent 70 pages from the advanced placement (AP) chemistry syllabus and to deliver knowledge-based systems capable of answering questions from that syllabus. This paper reports the next step toward realizing a Digital Aristotle: we present the design and evaluation results for a system called AURA, which enables domain experts in physics, chemistry, and biology to author a knowledge base and that then allows a different set of users to ask novel questions against that knowledge base. These results represent a substantial advance over what we reported in 2004, both in the breadth of covered subjects and in the provision of sophisticated technologies in knowledge representation and reasoning, natural language processing, and question answering to domain experts and novice users.
Project Halo UpdateโProgress Toward Digital Aristotle
Gunning, David (Vulcan, Inc.) | Chaudhri, Vinay K. (SRI International) | Clark, Peter E. (Boeing Research and Technology) | Barker, Ken (University of Texas at Austin) | Chaw, Shaw-Yi (University of Texas at Austin) | Greaves, Mark (Vulcan, Inc.) | Grosof, Benjamin (Vulcan, Inc.) | Leung, Alice (Raytheon BBN Technologies Corporation) | McDonald, David D. (Raytheon BBN Technologies Corporation) | Mishra, Sunil (SRI International) | Pacheco, John (SRI International) | Porter, Bruce (University of Texas at Austin) | Spaulding, Aaron (SRI International) | Tecuci, Dan (University of Texas at Austin) | Tien, Jing (SRI International)
In the winter, 2004 issue of AI Magazine, we reported Vulcan Inc.'s first step toward creating a question-answering system called "Digital Aristotle." The goal of that first step was to assess the state of the art in applied Knowledge Representation and Reasoning (KRR) by asking AI experts to represent 70 pages from the advanced placement (AP) chemistry syllabus and to deliver knowledge-based systems capable of answering questions from that syllabus. This paper reports the next step toward realizing a Digital Aristotle: we present the design and evaluation results for a system called AURA, which enables domain experts in physics, chemistry, and biology to author a knowledge base and that then allows a different set of users to ask novel questions against that knowledge base. These results represent a substantial advance over what we reported in 2004, both in the breadth of covered subjects and in the provision of sophisticated technologies in knowledge representation and reasoning, natural language processing, and question answering to domain experts and novice users.
Current Issues in Natural Language Generation: An Overview of the AAAI Workshop on Text Planning and Realization
Hovy, Eduard H., McDonald, David D., Young, Sheryl R.
Largely from this Traditionally, systems that automatically and realization--was widely experience, we came to understand generate natural language have deemed more convenient than accurate: the sorts of tasks that a text planner been conceived as consisting of two The components of a generator has to perform: determining which principal components: a text planner should be able to communicate at elements to say, coherently structuring and a realization grammar. Recent any level where their information is the input elements, building advances in the art, especially in the applicable.