Goto

Collaborating Authors

 McDaniel, Patrick


On the Robustness Tradeoff in Fine-Tuning

arXiv.org Artificial Intelligence

Fine-tuning has become the standard practice for adapting pre-trained (upstream) models to downstream tasks. However, the impact on model robustness is not well understood. In this work, we characterize the robustness-accuracy trade-off in fine-tuning. We evaluate the robustness and accuracy of fine-tuned models over 6 benchmark datasets and 7 different fine-tuning strategies. We observe a consistent trade-off between adversarial robustness and accuracy. Peripheral updates such as BitFit are more effective for simple tasks--over 75% above the average measured with area under the Pareto frontiers on CIFAR-10 and CIFAR-100. In contrast, fine-tuning information-heavy layers, such as attention layers via Compacter, achieves a better Pareto frontier on more complex tasks--57.5% and 34.6% above the average on Caltech-256 and CUB-200, respectively. Lastly, we observe that robustness of fine-tuning against out-of-distribution data closely tracks accuracy. These insights emphasize the need for robustness-aware fine-tuning to ensure reliable real-world deployments.


Adversarial Agents: Black-Box Evasion Attacks with Reinforcement Learning

arXiv.org Artificial Intelligence

Reinforcement learning (RL) offers powerful techniques for solving complex sequential decision-making tasks from experience. In this paper, we demonstrate how RL can be applied to adversarial machine learning (AML) to develop a new class of attacks that learn to generate adversarial examples: inputs designed to fool machine learning models. Unlike traditional AML methods that craft adversarial examples independently, our RL-based approach retains and exploits past attack experience to improve future attacks. We formulate adversarial example generation as a Markov Decision Process and evaluate RL's ability to (a) learn effective and efficient attack strategies and (b) compete with state-of-the-art AML. On CIFAR-10, our agent increases the success rate of adversarial examples by 19.4% and decreases the median number of victim model queries per adversarial example by 53.2% from the start to the end of training. In a head-to-head comparison with a state-of-the-art image attack, SquareAttack, our approach enables an adversary to generate adversarial examples with 13.1% more success after 5000 episodes of training. From a security perspective, this work demonstrates a powerful new attack vector that uses RL to attack ML models efficiently and at scale.


Targeting Alignment: Extracting Safety Classifiers of Aligned LLMs

arXiv.org Artificial Intelligence

Alignment in large language models (LLMs) is used to enforce guidelines such as safety. Yet, alignment fails in the face of jailbreak attacks that modify inputs to induce unsafe outputs. In this paper, we present and evaluate a method to assess the robustness of LLM alignment. We observe that alignment embeds a safety classifier in the target model that is responsible for deciding between refusal and compliance. We seek to extract an approximation of this classifier, called a surrogate classifier, from the LLM. We develop an algorithm for identifying candidate classifiers from subsets of the LLM model. We evaluate the degree to which the candidate classifiers approximate the model's embedded classifier in benign (F1 score) and adversarial (using surrogates in a white-box attack) settings. Our evaluation shows that the best candidates achieve accurate agreement (an F1 score above 80%) using as little as 20% of the model architecture. Further, we find attacks mounted on the surrogate models can be transferred with high accuracy. For example, a surrogate using only 50% of the Llama 2 model achieved an attack success rate (ASR) of 70%, a substantial improvement over attacking the LLM directly, where we only observed a 22% ASR. These results show that extracting surrogate classifiers is a viable (and highly effective) means for modeling (and therein addressing) the vulnerability of aligned models to jailbreaking attacks.


AutoDAN-Turbo: A Lifelong Agent for Strategy Self-Exploration to Jailbreak LLMs

arXiv.org Artificial Intelligence

In this paper, we propose AutoDAN-Turbo, a black-box jailbreak method that can automatically discover as many jailbreak strategies as possible from scratch, without any human intervention or predefined scopes (e.g., specified candidate strategies), and use them for red-teaming. As a result, AutoDAN-Turbo can significantly outperform baseline methods, achieving a 74.3% higher average attack success rate on public benchmarks. Notably, AutoDAN-Turbo achieves an 88.5 attack success rate on GPT-4-1106-turbo. In addition, AutoDAN-Turbo is a unified framework that can incorporate existing human-designed jailbreak strategies in a plug-and-play manner. By integrating human-designed strategies, AutoDAN-Turbo can even achieve a higher attack success rate of 93.4 on GPT-4-1106-turbo.


Explorations in Texture Learning

arXiv.org Artificial Intelligence

In this work, we investigate texture learning: the identification of textures learned by object classification models, and the extent to which they rely on these textures. We build texture-object associations that uncover new insights about the relationships between texture and object classes in CNNs and find three classes of results: associations that are strong and expected, strong and not expected, and expected but not present. Our analysis demonstrates that investigations in texture learning enable new methods for interpretability and have the potential to uncover unexpected biases. Code is available at https://github.com/blainehoak/ Convolutional Neural Networks (CNNs) have been shown to be more biased towards texture (repeated patterns), rather than shape like human vision is Geirhos et al. (2019).


A New Era in LLM Security: Exploring Security Concerns in Real-World LLM-based Systems

arXiv.org Artificial Intelligence

Large Language Model (LLM) systems are inherently compositional, with individual LLM serving as the core foundation with additional layers of objects such as plugins, sandbox, and so on. Along with the great potential, there are also increasing concerns over the security of such probabilistic intelligent systems. However, existing studies on LLM security often focus on individual LLM, but without examining the ecosystem through the lens of LLM systems with other objects (e.g., Frontend, Webtool, Sandbox, and so on). In this paper, we systematically analyze the security of LLM systems, instead of focusing on the individual LLMs. To do so, we build on top of the information flow and formulate the security of LLM systems as constraints on the alignment of the information flow within LLM and between LLM and other objects. Based on this construction and the unique probabilistic nature of LLM, the attack surface of the LLM system can be decomposed into three key components: (1) multi-layer security analysis, (2) analysis of the existence of constraints, and (3) analysis of the robustness of these constraints. To ground this new attack surface, we propose a multi-layer and multi-step approach and apply it to the state-of-art LLM system, OpenAI GPT4. Our investigation exposes several security issues, not just within the LLM model itself but also in its integration with other components. We found that although the OpenAI GPT4 has designed numerous safety constraints to improve its safety features, these safety constraints are still vulnerable to attackers. To further demonstrate the real-world threats of our discovered vulnerabilities, we construct an end-to-end attack where an adversary can illicitly acquire the user's chat history, all without the need to manipulate the user's input or gain direct access to OpenAI GPT4. Our demo is in the link: https://fzwark.github.io/LLM-System-Attack-Demo/


The Efficacy of Transformer-based Adversarial Attacks in Security Domains

arXiv.org Artificial Intelligence

Today, the security of many domains rely on the use of Machine Learning to detect threats, identify vulnerabilities, and safeguard systems from attacks. Recently, transformer architectures have improved the state-of-the-art performance on a wide range of tasks such as malware detection and network intrusion detection. But, before abandoning current approaches to transformers, it is crucial to understand their properties and implications on cybersecurity applications. In this paper, we evaluate the robustness of transformers to adversarial samples for system defenders (i.e., resiliency to adversarial perturbations generated on different types of architectures) and their adversarial strength for system attackers (i.e., transferability of adversarial samples generated by transformers to other target models). To that effect, we first fine-tune a set of pre-trained transformer, Convolutional Neural Network (CNN), and hybrid (an ensemble of transformer and CNN) models to solve different downstream image-based tasks. Then, we use an attack algorithm to craft 19,367 adversarial examples on each model for each task. The transferability of these adversarial examples is measured by evaluating each set on other models to determine which models offer more adversarial strength, and consequently, more robustness against these attacks. We find that the adversarial examples crafted on transformers offer the highest transferability rate (i.e., 25.7% higher than the average) onto other models. Similarly, adversarial examples crafted on other models have the lowest rate of transferability (i.e., 56.7% lower than the average) onto transformers. Our work emphasizes the importance of studying transformer architectures for attacking and defending models in security domains, and suggests using them as the primary architecture in transfer attack settings.


The Space of Adversarial Strategies

arXiv.org Artificial Intelligence

Adversarial examples, inputs designed to induce worst-case behavior in machine learning models, have been extensively studied over the past decade. Yet, our understanding of this phenomenon stems from a rather fragmented pool of knowledge; at present, there are a handful of attacks, each with disparate assumptions in threat models and incomparable definitions of optimality. In this paper, we propose a systematic approach to characterize worst-case (i.e., optimal) adversaries. We first introduce an extensible decomposition of attacks in adversarial machine learning by atomizing attack components into surfaces and travelers. With our decomposition, we enumerate over components to create 576 attacks (568 of which were previously unexplored). Next, we propose the Pareto Ensemble Attack (PEA): a theoretical attack that upper-bounds attack performance. With our new attacks, we measure performance relative to the PEA on: both robust and non-robust models, seven datasets, and three extended lp-based threat models incorporating compute costs, formalizing the Space of Adversarial Strategies. From our evaluation we find that attack performance to be highly contextual: the domain, model robustness, and threat model can have a profound influence on attack efficacy. Our investigation suggests that future studies measuring the security of machine learning should: (1) be contextualized to the domain & threat models, and (2) go beyond the handful of known attacks used today.


How Relevant is the Turing Test in the Age of Sophisbots?

arXiv.org Machine Learning

Popular culture has contemplated societies of thinking machines for generations, envisioning futures from utopian to dystopian. These futures are, arguably, here now-we find ourselves at the doorstep of technology that can at least simulate the appearance of thinking, acting, and feeling. The real question is: now what?


Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust Deep Learning

arXiv.org Machine Learning

Deep neural networks (DNNs) enable innovative applications of machine learning like image recognition, machine translation, or malware detection. However, deep learning is often criticized for its lack of robustness in adversarial settings (e.g., vulnerability to adversarial inputs) and general inability to rationalize its predictions. In this work, we exploit the structure of deep learning to enable new learning-based inference and decision strategies that achieve desirable properties such as robustness and interpretability. We take a first step in this direction and introduce the Deep k-Nearest Neighbors (DkNN). This hybrid classifier combines the k-nearest neighbors algorithm with representations of the data learned by each layer of the DNN: a test input is compared to its neighboring training points according to the distance that separates them in the representations. We show the labels of these neighboring points afford confidence estimates for inputs outside the model's training manifold, including on malicious inputs like adversarial examples--and therein provides protections against inputs that are outside the models understanding. This is because the nearest neighbors can be used to estimate the nonconformity of, i.e., the lack of support for, a prediction in the training data. The neighbors also constitute human-interpretable explanations of predictions. We evaluate the DkNN algorithm on several datasets, and show the confidence estimates accurately identify inputs outside the model, and that the explanations provided by nearest neighbors are intuitive and useful in understanding model failures.