Goto

Collaborating Authors

 McCreadie, Richard


Understanding and Mitigating Human-Labelling Errors in Supervised Contrastive Learning

arXiv.org Artificial Intelligence

Human-annotated vision datasets inevitably contain a fraction of human mislabelled examples. While the detrimental effects of such mislabelling on supervised learning are well-researched, their influence on Supervised Contrastive Learning (SCL) remains largely unexplored. In this paper, we show that human-labelling errors not only differ significantly from synthetic label errors, but also pose unique challenges in SCL, different to those in traditional supervised learning methods. Specifically, our results indicate they adversely impact the learning process in the ~99% of cases when they occur as false positive samples. Existing noise-mitigating methods primarily focus on synthetic label errors and tackle the unrealistic setting of very high synthetic noise rates (40-80%), but they often underperform on common image datasets due to overfitting. To address this issue, we introduce a novel SCL objective with robustness to human-labelling errors, SCL-RHE. SCL-RHE is designed to mitigate the effects of real-world mislabelled examples, typically characterized by much lower noise rates (<5%). We demonstrate that SCL-RHE consistently outperforms state-of-the-art representation learning and noise-mitigating methods across various vision benchmarks, by offering improved resilience against human-labelling errors.


LaCViT: A Label-aware Contrastive Fine-tuning Framework for Vision Transformers

arXiv.org Artificial Intelligence

Vision Transformers (ViTs) have emerged as popular models in computer vision, demonstrating state-of-the-art performance across various tasks. This success typically follows a two-stage strategy involving pre-training on large-scale datasets using self-supervised signals, such as masked random patches, followed by fine-tuning on task-specific labeled datasets with cross-entropy loss. However, this reliance on cross-entropy loss has been identified as a limiting factor in ViTs, affecting their generalization and transferability to downstream tasks. Addressing this critical challenge, we introduce a novel Label-aware Contrastive Training framework, LaCViT, which significantly enhances the quality of embeddings in ViTs. LaCViT not only addresses the limitations of cross-entropy loss but also facilitates more effective transfer learning across diverse image classification tasks. Our comprehensive experiments on eight standard image classification datasets reveal that LaCViT statistically significantly enhances the performance of three evaluated ViTs by up-to 10.78% under Top-1 Accuracy.


MultiWay-Adapater: Adapting large-scale multi-modal models for scalable image-text retrieval

arXiv.org Artificial Intelligence

As Multimodal Large Language Models (MLLMs) grow in size, adapting them to specialized tasks becomes increasingly challenging due to high computational and memory demands. Indeed, traditional fine-tuning methods are costly, due to the need for extensive, task-specific training. While efficient adaptation methods exist that aim to reduce these costs, in practice they suffer from shallow inter-modal alignment, which severely hurts model effectiveness. To tackle these computational challenges and improve inter-modal alignment, we introduce the MultiWay-Adapter (MWA), a novel framework featuring an 'Alignment Enhancer'. This enhancer deepens inter-modal alignment, enabling high transferability with minimal tuning effort. Our experiments show that unlike prior efficient tuning approaches, MWA maintains model effectiveness, while reducing training time by up-to 57%. MWA is also lightweight, increasing model size by only 2-3% (in terms of parameters) for state-of-the-art foundation models like BEiT-3 Large. These results demonstrate that MWA provides an efficient and effective adaptation method for MLLMs, significantly broadening their applicability.


CrisisViT: A Robust Vision Transformer for Crisis Image Classification

arXiv.org Artificial Intelligence

In times of emergency, crisis response agencies need to quickly and accurately assess the situation on the ground in order to deploy relevant services and resources. However, authorities often have to make decisions based on limited information, as data on affected regions can be scarce until local response services can provide first-hand reports. Fortunately, the widespread availability of smartphones with high-quality cameras has made citizen journalism through social media a valuable source of information for crisis responders. However, analyzing the large volume of images posted by citizens requires more time and effort than is typically available. To address this issue, this paper proposes the use of state-of-the-art deep neural models for automatic image classification/tagging, specifically by adapting transformer-based architectures for crisis image classification (CrisisViT). We leverage the new Incidents1M crisis image dataset to develop a range of new transformer-based image classification models. Through experimentation over the standard Crisis image benchmark dataset, we demonstrate that the CrisisViT models significantly outperform previous approaches in emergency type, image relevance, humanitarian category, and damage severity classification. Additionally, we show that the new Incidents1M dataset can further augment the CrisisViT models resulting in an additional 1.25% absolute accuracy gain.


RoboLLM: Robotic Vision Tasks Grounded on Multimodal Large Language Models

arXiv.org Artificial Intelligence

Robotic vision applications often necessitate a wide range of visual perception tasks, such as object detection, segmentation, and identification. While there have been substantial advances in these individual tasks, integrating specialized models into a unified vision pipeline presents significant engineering challenges and costs. Recently, Multimodal Large Language Models (MLLMs) have emerged as novel backbones for various downstream tasks. We argue that leveraging the pre-training capabilities of MLLMs enables the creation of a simplified framework, thus mitigating the need for task-specific encoders. Specifically, the large-scale pretrained knowledge in MLLMs allows for easier fine-tuning to downstream robotic vision tasks and yields superior performance. We introduce the RoboLLM framework, equipped with a BEiT-3 backbone, to address all visual perception tasks in the ARMBench challenge-a large-scale robotic manipulation dataset about real-world warehouse scenarios. RoboLLM not only outperforms existing baselines but also substantially reduces the engineering burden associated with model selection and tuning. The source code is publicly available at https://github.com/longkukuhi/armbench.


Divergence-Based Domain Transferability for Zero-Shot Classification

arXiv.org Artificial Intelligence

Transferring learned patterns from pretrained neural language models has been shown to significantly improve effectiveness across a variety of language-based tasks, meanwhile further tuning on intermediate tasks has been demonstrated to provide additional performance benefits, provided the intermediate task is sufficiently related to the target task. However, how to identify related tasks is an open problem, and brute-force searching effective task combinations is prohibitively expensive. Hence, the question arises, are we able to improve the effectiveness and efficiency of tasks with no training examples through selective fine-tuning? In this paper, we explore statistical measures that approximate the divergence between domain representations as a means to estimate whether tuning using one task pair will exhibit performance benefits over tuning another. This estimation can then be used to reduce the number of task pairs that need to be tested by eliminating pairs that are unlikely to provide benefits. Through experimentation over 58 tasks and over 6,600 task pair combinations, we demonstrate that statistical measures can distinguish effective task pairs, and the resulting estimates can reduce end-to-end runtime by up to 40%.


Comparing Overall and Targeted Sentiments in Social Media during Crises

AAAI Conferences

The tracking of citizens' reactions in social media during crises has attracted an increasing level of interest in the research community. In particular, sentiment analysis over social media posts can be regarded as a particularly useful tool, enabling civil protection and law enforcement agencies to more effectively respond during this type of situation. Prior work on sentiment analysis in social media during crises has applied well-known techniques for overall sentiment detection in posts. However, we argue that sentiment analysis of the overall post might not always be suitable, as it may miss the presence of more targeted sentiments, e.g. about the people and organizations involved (which we refer to as sentiment targets). Through a crowdsourcing study, we show that there are marked differences between the overall tweet sentiment and the sentiment expressed towards the subjects mentioned in tweets related to three crises events.


Evaluating Real-Time Search over Tweets

AAAI Conferences

Twitter offers a phenomenal platform for the social sharing of information. We describe new resources that have been created in the context of the Text Retrieval Conference (TREC) to support the academic study of Twitter as a real-time information source. We formalize an information seeking task — real-time search — and offer a methodology for measuring system effectiveness. At the TREC 2011 Microblog Track, 58 research groups participated in the first ever evaluation of this task. We present data from the effort to illustrate and support our methodology.