McCloskey, Kevin
Dataset of Random Relaxations for Crystal Structure Search of Li-Si System
Cheon, Gowoon, Yang, Lusann, McCloskey, Kevin, Reed, Evan J., Cubuk, Ekin D.
Crystal structure search is a long-standing challenge in materials design. We present a dataset of more than 100,000 structural relaxations of potential battery anode materials from randomized structures using density functional theory calculations. We illustrate the usage of the dataset by training graph neural networks to predict structural relaxations from randomly generated structures. Our models directly predict stresses in addition to forces, which allows them to accurately simulate relaxations of both ionic positions and lattice vectors. We show that models trained on the molecular dynamics simulations fail to simulate relaxations from random structures, while training on our data leads to up to two orders of magnitude decrease in error for the same task. Our model is able to find an experimentally verified structure of a stoichiometry held out from training. We find that randomly perturbing atomic positions during training improves both the accuracy and out of domain generalization of the models.
Using Attribution to Decode Dataset Bias in Neural Network Models for Chemistry
McCloskey, Kevin, Taly, Ankur, Monti, Federico, Brenner, Michael P., Colwell, Lucy
Deep neural networks have achieved state of the art accuracy at classifying molecules with respect to whether they bind to specific protein targets. A key breakthrough would occur if these models could reveal the fragment pharmacophores that are causally involved in binding. Extracting chemical details of binding from the networks could potentially lead to scientific discoveries about the mechanisms of drug actions. But doing so requires shining light into the black box that is the trained neural network model, a task that has proved difficult across many domains. Here we show how the binding mechanism learned by deep neural network models can be interrogated, using a recently described attribution method. We first work with carefully constructed synthetic datasets, in which the 'fragment logic' of binding is fully known. We find that networks that achieve perfect accuracy on held out test datasets still learn spurious correlations due to biases in the datasets, and we are able to exploit this non-robustness to construct adversarial examples that fool the model. The dataset bias makes these models unreliable for accurately revealing information about the mechanisms of protein-ligand binding. In light of our findings, we prescribe a test that checks for dataset bias given a hypothesis. If the test fails, it indicates that either the model must be simplified or regularized and/or that the training dataset requires augmentation.
Molecular Graph Convolutions: Moving Beyond Fingerprints
Kearnes, Steven, McCloskey, Kevin, Berndl, Marc, Pande, Vijay, Riley, Patrick
Molecular "fingerprints" encoding structural information are the workhorse of cheminformatics and machine learning in drug discovery applications. However, fingerprint representations necessarily emphasize particular aspects of the molecular structure while ignoring others, rather than allowing the model to make data-driven decisions. We describe molecular "graph convolutions", a machine learning architecture for learning from undirected graphs, specifically small molecules. Graph convolutions use a simple encoding of the molecular graph---atoms, bonds, distances, etc.---which allows the model to take greater advantage of information in the graph structure. Although graph convolutions do not outperform all fingerprint-based methods, they (along with other graph-based methods) represent a new paradigm in ligand-based virtual screening with exciting opportunities for future improvement.