Goto

Collaborating Authors

 McAuley, Julian


Cognitive Bias in High-Stakes Decision-Making with LLMs

arXiv.org Artificial Intelligence

Large language models (LLMs) offer significant potential as tools to support an expanding range of decision-making tasks. However, given their training on human (created) data, LLMs can inherit both societal biases against protected groups, as well as be subject to cognitive bias. Such human-like bias can impede fair and explainable decisions made with LLM assistance. Our work introduces BiasBuster, a framework designed to uncover, evaluate, and mitigate cognitive bias in LLMs, particularly in high-stakes decision-making tasks. Inspired by prior research in psychology and cognitive sciences, we develop a dataset containing 16,800 prompts to evaluate different cognitive biases (e.g., prompt-induced, sequential, inherent). We test various bias mitigation strategies, amidst proposing a novel method using LLMs to debias their own prompts. Our analysis provides a comprehensive picture on the presence and effects of cognitive bias across different commercial and open-source models. We demonstrate that our self-help debiasing effectively mitigate cognitive bias without having to manually craft examples for each bias type.


RecWizard: A Toolkit for Conversational Recommendation with Modular, Portable Models and Interactive User Interface

arXiv.org Artificial Intelligence

We present a new Python toolkit called RecWizard for Conversational Recommender Systems (CRS). RecWizard offers support for development of models and interactive user interface, drawing from the best practices of the Huggingface ecosystems. CRS with RecWizard are modular, portable, interactive and Large Language Models (LLMs)-friendly, to streamline the learning process and reduce the additional effort for CRS research. For more comprehensive information about RecWizard, please check our GitHub https://github.com/McAuley-Lab/RecWizard.


CAMELoT: Towards Large Language Models with Training-Free Consolidated Associative Memory

arXiv.org Artificial Intelligence

Large Language Models (LLMs) struggle to handle long input sequences due to high memory and runtime costs. Memory-augmented models have emerged as a promising solution to this problem, but current methods are hindered by limited memory capacity and require costly re-training to integrate with a new LLM. In this work, we introduce an associative memory module which can be coupled to any pre-trained (frozen) attention-based LLM without re-training, enabling it to handle arbitrarily long input sequences. Unlike previous methods, our associative memory module consolidates representations of individual tokens into a non-parametric distribution model, dynamically managed by properly balancing the novelty and recency of the incoming data. By retrieving information from this consolidated associative memory, the base LLM can achieve significant (up to 29.7% on Arxiv) perplexity reduction in long-context modeling compared to other baselines evaluated on standard benchmarks. This architecture, which we call CAMELoT (Consolidated Associative Memory Enhanced Long Transformer), demonstrates superior performance even with a tiny context window of 128 tokens, and also enables improved in-context learning with a much larger set of demonstrations.


How to Train Data-Efficient LLMs

arXiv.org Artificial Intelligence

The training of large language models (LLMs) is expensive. In this paper, we study data-efficient approaches for pre-training LLMs, i.e., techniques that aim to optimize the Pareto frontier of model quality and training resource/data consumption. We seek to understand the tradeoffs associated with data selection routines based on (i) expensive-to-compute data-quality estimates, and (ii) maximization of coverage and diversity-based measures in the feature space. Our first technique, Ask-LLM, leverages the zero-shot reasoning capabilities of instruction-tuned LLMs to directly assess the quality of a training example. To target coverage, we propose Density sampling, which models the data distribution to select a diverse sample. In our comparison of 19 samplers, involving hundreds of evaluation tasks and pre-training runs, we find that Ask-LLM and Density are the best methods in their respective categories. Coverage sampling can recover the performance of the full data, while models trained on Ask-LLM data consistently outperform full-data training -- even when we reject 90% of the original dataset, while converging up to 70% faster.


InstructGraph: Boosting Large Language Models via Graph-centric Instruction Tuning and Preference Alignment

arXiv.org Artificial Intelligence

Do current large language models (LLMs) better solve graph reasoning and generation tasks with parameter updates? In this paper, we propose InstructGraph, a framework that empowers LLMs with the abilities of graph reasoning and generation by instruction tuning and preference alignment. Specifically, we first propose a structured format verbalizer to unify all graph data into a universal code-like format, which can simply represent the graph without any external graph-specific encoders. Furthermore, a graph instruction tuning stage is introduced to guide LLMs in solving graph reasoning and generation tasks. Finally, we identify potential hallucination problems in graph tasks and sample negative instances for preference alignment, the target of which is to enhance the output's reliability of the model. Extensive experiments across multiple graph-centric tasks exhibit that InstructGraph can achieve the best performance and outperform GPT-4 and LLaMA2 by more than 13\% and 38\%, respectively.


MEMORYLLM: Towards Self-Updatable Large Language Models

arXiv.org Artificial Intelligence

Existing Large Language Models (LLMs) usually remain static after deployment, which might make it hard to inject new knowledge into the model. We aim to build models containing a considerable portion of self-updatable parameters, enabling the model to integrate new knowledge effectively and efficiently. To this end, we introduce MEMORYLLM, a model that comprises a transformer and a fixed-size memory pool within the latent space of the transformer. MEMORYLLM can self-update with text knowledge and memorize the knowledge injected earlier. Our evaluations demonstrate the ability of MEMORYLLM to effectively incorporate new knowledge, as evidenced by its performance on model editing benchmarks. Meanwhile, the model exhibits long-term information retention capacity, which is validated through our custom-designed evaluations and long-context benchmarks. MEMORYLLM also shows operational integrity without any sign of performance degradation even after nearly a million memory updates.


FINEST: Stabilizing Recommendations by Rank-Preserving Fine-Tuning

arXiv.org Artificial Intelligence

Modern recommender systems may output considerably different recommendations due to small perturbations in the training data. Changes in the data from a single user will alter the recommendations as well as the recommendations of other users. In applications like healthcare, housing, and finance, this sensitivity can have adverse effects on user experience. We propose a method to stabilize a given recommender system against such perturbations. This is a challenging task due to (1) the lack of a ``reference'' rank list that can be used to anchor the outputs; and (2) the computational challenges in ensuring the stability of rank lists with respect to all possible perturbations of training data. Our method, FINEST, overcomes these challenges by obtaining reference rank lists from a given recommendation model and then fine-tuning the model under simulated perturbation scenarios with rank-preserving regularization on sampled items. Our experiments on real-world datasets demonstrate that FINEST can ensure that recommender models output stable recommendations under a wide range of different perturbations without compromising next-item prediction accuracy.


DITTO: Diffusion Inference-Time T-Optimization for Music Generation

arXiv.org Artificial Intelligence

We propose Diffusion Inference-Time T-Optimization (DITTO), a general-purpose frame-work for controlling pre-trained text-to-music diffusion models at inference-time via optimizing initial noise latents. Our method can be used to optimize through any differentiable feature matching loss to achieve a target (stylized) output and leverages gradient checkpointing for memory efficiency. We demonstrate a surprisingly wide-range of applications for music generation including inpainting, outpainting, and looping as well as intensity, melody, and musical structure control - all without ever fine-tuning the underlying model. When we compare our approach against related training, guidance, and optimization-based methods, we find DITTO achieves state-of-the-art performance on nearly all tasks, including outperforming comparable approaches on controllability, audio quality, and computational efficiency, thus opening the door for high-quality, flexible, training-free control of diffusion models. Sound examples can be found at https://DITTO-Music.github.io/web/.


Deciphering Compatibility Relationships with Textual Descriptions via Extraction and Explanation

arXiv.org Artificial Intelligence

Understanding and accurately explaining compatibility relationships between fashion items is a challenging problem in the burgeoning domain of AI-driven outfit recommendations. Present models, while making strides in this area, still occasionally fall short, offering explanations that can be elementary and repetitive. This work aims to address these shortcomings by introducing the Pair Fashion Explanation (PFE) dataset, a unique resource that has been curated to illuminate these compatibility relationships. Furthermore, we propose an innovative two-stage pipeline model that leverages this dataset. This fine-tuning allows the model to generate explanations that convey the compatibility relationships between items. Our experiments showcase the model's potential in crafting descriptions that are knowledgeable, aligned with ground-truth matching correlations, and that produce understandable and informative descriptions, as assessed by both automatic metrics and human evaluation. Our code and data are released at https://github.com/wangyu-ustc/PairFashionExplanation


Baize: An Open-Source Chat Model with Parameter-Efficient Tuning on Self-Chat Data

arXiv.org Artificial Intelligence

Chat models, such as ChatGPT, have shown impressive capabilities and have been rapidly adopted across numerous domains. However, these models are only accessible through a restricted API, creating barriers for new research and progress in the field. We propose a pipeline that can automatically generate a high-quality multi-turn chat corpus by leveraging ChatGPT to engage in a conversation with itself. Subsequently, we employ parameter-efficient tuning to enhance LLaMA, an open-source large language model. The resulting model, named Baize, demonstrates good performance in multi-turn dialogues with guardrails that minimize potential risks. Furthermore, we propose a new technique called Self-Distill with Feedback, to further improve the performance of the Baize models with feedback from ChatGPT. The Baize models and data are released for research purposes only at https://github.com/project-baize/baize-chatbot. An online demo is also available at https://huggingface.co/spaces/project-baize/chat-with-baize.