Goto

Collaborating Authors

 McAllester, D.


The Generalized A* Architecture

arXiv.org Artificial Intelligence

We consider the problem of computing a lightest derivation of a global structure using a set of weighted rules. A large variety of inference problems in AI can be formulated in this framework. We generalize A* search and heuristics derived from abstractions to a broad class of lightest derivation problems. We also describe a new algorithm that searches for lightest derivations using a hierarchy of abstractions. Our generalization of A* gives a new algorithm for searching AND/OR graphs in a bottom-up fashion. We discuss how the algorithms described here provide a general architecture for addressing the pipeline problem --- the problem of passing information back and forth between various stages of processing in a perceptual system. We consider examples in computer vision and natural language processing. We apply the hierarchical search algorithm to the problem of estimating the boundaries of convex objects in grayscale images and compare it to other search methods. A second set of experiments demonstrate the use of a new compositional model for finding salient curves in images.


Decision-Theoretic Bidding Based on Learned Density Models in Simultaneous, Interacting Auctions

arXiv.org Artificial Intelligence

Auctions are becoming an increasingly popular method for transacting business, especially over the Internet. This article presents a general approach to building autonomous bidding agents to bid in multiple simultaneous auctions for interacting goods. A core component of our approach learns a model of the empirical price dynamics based on past data and uses the model to analytically calculate, to the greatest extent possible, optimal bids. We introduce a new and general boosting-based algorithm for conditional density estimation problems of this kind, i.e., supervised learning problems in which the goal is to estimate the entire conditional distribution of the real-valued label. This approach is fully implemented as ATTac-2001, a top-scoring agent in the second Trading Agent Competition (TAC-01). We present experiments demonstrating the effectiveness of our boosting-based price predictor relative to several reasonable alternatives.


Maximum Margin Semi-Supervised Learning for Structured Variables

Neural Information Processing Systems

Many real-world classification problems involve the prediction of multiple interdependent variables forming some structural dependency. Recentprogress in machine learning has mainly focused on supervised classification of such structured variables. In this paper, we investigate structured classification in a semi-supervised setting. We present a discriminative approach that utilizes the intrinsic geometry ofinput patterns revealed by unlabeled data points and we derive a maximum-margin formulation of semi-supervised learning for structured variables.


Decision-Theoretic Bidding Based on Learned Density Models in Simultaneous, Interacting Auctions

Journal of Artificial Intelligence Research

Auctions are becoming an increasingly popular method for transacting business, especially over the Internet. This article presents a general approach to building autonomous bidding agents to bid in multiple simultaneous auctions for interacting goods. A core component of our approach learns a model of the empirical price dynamics based on past data and uses the model to analytically calculate, to the greatest extent possible, optimal bids. We introduce a new and general boosting-based algorithm for conditional density estimation problems of this kind, i.e., supervised learning problems in which the goal is to estimate the entire conditional distribution of the real-valued label. This approach is fully implemented as ATTac-2001, a top-scoring agent in the second Trading Agent Competition (TAC-01). We present experiments demonstrating the effectiveness of our boosting-based price predictor relative to several reasonable alternatives.