McAleer, Stephen
Tree Search for Language Model Agents
Koh, Jing Yu, McAleer, Stephen, Fried, Daniel, Salakhutdinov, Ruslan
Autonomous agents powered by language models (LMs) have demonstrated promise in their ability to perform decision-making tasks such as web automation. However, a key limitation remains: LMs, primarily optimized for natural language understanding and generation, struggle with multi-step reasoning, planning, and using environmental feedback when attempting to solve realistic computer tasks. Towards addressing this, we propose an inference-time search algorithm for LM agents to explicitly perform exploration and multi-step planning in interactive web environments. Our approach is a form of best-first tree search that operates within the actual environment space, and is complementary with most existing state-of-the-art agents. It is the first tree search algorithm for LM agents that shows effectiveness on realistic web tasks. On the challenging VisualWebArena benchmark, applying our search algorithm on top of a GPT-4o agent yields a 39.7% relative increase in success rate compared to the same baseline without search, setting a state-of-the-art success rate of 26.4%. On WebArena, search also yields a 28.0% relative improvement over a baseline agent, setting a competitive success rate of 19.2%. Our experiments highlight the effectiveness of search for web agents, and we demonstrate that performance scales with increased test-time compute. We conduct a thorough analysis of our results to highlight improvements from search, limitations, and promising directions for future work. Our code and models are publicly released at https://jykoh.com/search-agents.
Policy Space Response Oracles: A Survey
Bighashdel, Ariyan, Wang, Yongzhao, McAleer, Stephen, Savani, Rahul, Oliehoek, Frans A.
Game theory provides a mathematical way to study the interaction between multiple decision makers. However, classical game-theoretic analysis is limited in scalability due to the large number of strategies, precluding direct application to more complex scenarios. This survey provides a comprehensive overview of a framework for large games, known as Policy Space Response Oracles (PSRO), which holds promise to improve scalability by focusing attention on sufficient subsets of strategies. We first motivate PSRO and provide historical context. We then focus on the strategy exploration problem for PSRO: the challenge of assembling effective subsets of strategies that still represent the original game well with minimum computational cost. We survey current research directions for enhancing the efficiency of PSRO, and explore the applications of PSRO across various domains. We conclude by discussing open questions and future research.
Grasper: A Generalist Pursuer for Pursuit-Evasion Problems
Li, Pengdeng, Li, Shuxin, Wang, Xinrun, Cerny, Jakub, Zhang, Youzhi, McAleer, Stephen, Chan, Hau, An, Bo
Pursuit-evasion games (PEGs) model interactions between a team of pursuers and an evader in graph-based environments such as urban street networks. Recent advancements have demonstrated the effectiveness of the pre-training and fine-tuning paradigm in PSRO to improve scalability in solving large-scale PEGs. However, these methods primarily focus on specific PEGs with fixed initial conditions that may vary substantially in real-world scenarios, which significantly hinders the applicability of the traditional methods. To address this issue, we introduce Grasper, a GeneRAlist purSuer for Pursuit-Evasion pRoblems, capable of efficiently generating pursuer policies tailored to specific PEGs. Our contributions are threefold: First, we present a novel architecture that offers high-quality solutions for diverse PEGs, comprising critical components such as (i) a graph neural network (GNN) to encode PEGs into hidden vectors, and (ii) a hypernetwork to generate pursuer policies based on these hidden vectors. As a second contribution, we develop an efficient three-stage training method involving (i) a pre-pretraining stage for learning robust PEG representations through self-supervised graph learning techniques like GraphMAE, (ii) a pre-training stage utilizing heuristic-guided multi-task pre-training (HMP) where heuristic-derived reference policies (e.g., through Dijkstra's algorithm) regularize pursuer policies, and (iii) a fine-tuning stage that employs PSRO to generate pursuer policies on designated PEGs. Finally, we perform extensive experiments on synthetic and real-world maps, showcasing Grasper's significant superiority over baselines in terms of solution quality and generalizability. We demonstrate that Grasper provides a versatile approach for solving pursuit-evasion problems across a broad range of scenarios, enabling practical deployment in real-world situations.
Scalable Mechanism Design for Multi-Agent Path Finding
Friedrich, Paul, Zhang, Yulun, Curry, Michael, Dierks, Ludwig, McAleer, Stephen, Li, Jiaoyang, Sandholm, Tuomas, Seuken, Sven
Multi-Agent Path Finding (MAPF) involves determining paths for multiple agents to travel simultaneously through a shared area toward particular goal locations. This problem is computationally complex, especially when dealing with large numbers of agents, as is common in realistic applications like autonomous vehicle coordination. Finding an optimal solution is often computationally infeasible, making the use of approximate algorithms essential. Adding to the complexity, agents might act in a self-interested and strategic way, possibly misrepresenting their goals to the MAPF algorithm if it benefits them. Although the field of mechanism design offers tools to align incentives, using these tools without careful consideration can fail when only having access to approximately optimal outcomes. Since approximations are crucial for scalable MAPF algorithms, this poses a significant challenge. In this work, we introduce the problem of scalable mechanism design for MAPF and propose three strategyproof mechanisms, two of which even use approximate MAPF algorithms. We test our mechanisms on realistic MAPF domains with problem sizes ranging from dozens to hundreds of agents. Our findings indicate that they improve welfare beyond a simple baseline.
AI Alignment: A Comprehensive Survey
Ji, Jiaming, Qiu, Tianyi, Chen, Boyuan, Zhang, Borong, Lou, Hantao, Wang, Kaile, Duan, Yawen, He, Zhonghao, Zhou, Jiayi, Zhang, Zhaowei, Zeng, Fanzhi, Ng, Kwan Yee, Dai, Juntao, Pan, Xuehai, O'Gara, Aidan, Lei, Yingshan, Xu, Hua, Tse, Brian, Fu, Jie, McAleer, Stephen, Yang, Yaodong, Wang, Yizhou, Zhu, Song-Chun, Guo, Yike, Gao, Wen
AI alignment aims to make AI systems behave in line with human intentions and values. As AI systems grow more capable, so do risks from misalignment. To provide a comprehensive and up-to-date overview of the alignment field, in this survey, we delve into the core concepts, methodology, and practice of alignment. First, we identify four principles as the key objectives of AI alignment: Robustness, Interpretability, Controllability, and Ethicality (RICE). Guided by these four principles, we outline the landscape of current alignment research and decompose them into two key components: forward alignment and backward alignment. The former aims to make AI systems aligned via alignment training, while the latter aims to gain evidence about the systems' alignment and govern them appropriately to avoid exacerbating misalignment risks. On forward alignment, we discuss techniques for learning from feedback and learning under distribution shift. On backward alignment, we discuss assurance techniques and governance practices. We also release and continually update the website (www.alignmentsurvey.com) which features tutorials, collections of papers, blog posts, and other resources.
Llemma: An Open Language Model For Mathematics
Azerbayev, Zhangir, Schoelkopf, Hailey, Paster, Keiran, Santos, Marco Dos, McAleer, Stephen, Jiang, Albert Q., Deng, Jia, Biderman, Stella, Welleck, Sean
We present Llemma, a large language model for mathematics. We continue pretraining Code Llama on the Proof-Pile-2, a mixture of scientific papers, web data containing mathematics, and mathematical code, yielding Llemma. On the MATH benchmark Llemma outperforms all known open base models, as well as the unreleased Minerva model suite on an equi-parameter basis. Moreover, Llemma is capable of tool use and formal theorem proving without any further finetuning. We openly release all artifacts, including 7 billion and 34 billion parameter models, the Proof-Pile-2, and code to replicate our experiments.
Language Models can Solve Computer Tasks
Kim, Geunwoo, Baldi, Pierre, McAleer, Stephen
Agents capable of carrying out general tasks on a computer can improve efficiency and productivity by automating repetitive tasks and assisting in complex problem-solving. Ideally, such agents should be able to solve new computer tasks presented to them through natural language commands. However, previous approaches to this problem require large amounts of expert demonstrations and task-specific reward functions, both of which are impractical for new tasks. In this work, we show that a pre-trained large language model (LLM) agent can execute computer tasks guided by natural language using a simple prompting scheme where the agent Recursively Criticizes and Improves its output (RCI). The RCI approach significantly outperforms existing LLM methods for automating computer tasks and surpasses supervised learning (SL) and reinforcement learning (RL) approaches on the MiniWoB++ benchmark. We compare multiple LLMs and find that RCI with the InstructGPT-3+RLHF LLM is state-of-the-art on MiniWoB++, using only a handful of demonstrations per task rather than tens of thousands, and without a task-specific reward function. Furthermore, we demonstrate RCI prompting's effectiveness in enhancing LLMs' reasoning abilities on a suite of natural language reasoning tasks, outperforming chain of thought (CoT) prompting with external feedback. We find that RCI combined with CoT performs better than either separately. Our code can be found here: https://github.com/posgnu/rci-agent.
Policy Space Diversity for Non-Transitive Games
Yao, Jian, Liu, Weiming, Fu, Haobo, Yang, Yaodong, McAleer, Stephen, Fu, Qiang, Yang, Wei
Policy-Space Response Oracles (PSRO) is an influential algorithm framework for approximating a Nash Equilibrium (NE) in multi-agent non-transitive games. Many previous studies have been trying to promote policy diversity in PSRO. A major weakness in existing diversity metrics is that a more diverse (according to their diversity metrics) population does not necessarily mean (as we proved in the paper) a better approximation to a NE. To alleviate this problem, we propose a new diversity metric, the improvement of which guarantees a better approximation to a NE. Meanwhile, we develop a practical and well-justified method to optimize our diversity metric using only state-action samples. By incorporating our diversity regularization into the best response solving in PSRO, we obtain a new PSRO variant, Policy Space Diversity PSRO (PSD-PSRO). We present the convergence property of PSD-PSRO. Empirically, extensive experiments on various games demonstrate that PSD-PSRO is more effective in producing significantly less exploitable policies than state-of-the-art PSRO variants.
Confronting Reward Model Overoptimization with Constrained RLHF
Moskovitz, Ted, Singh, Aaditya K., Strouse, DJ, Sandholm, Tuomas, Salakhutdinov, Ruslan, Dragan, Anca D., McAleer, Stephen
Large language models are typically aligned with human preferences by optimizing $\textit{reward models}$ (RMs) fitted to human feedback. However, human preferences are multi-faceted, and it is increasingly common to derive reward from a composition of simpler reward models which each capture a different aspect of language quality. This itself presents a challenge, as it is difficult to appropriately weight these component RMs when combining them. Compounding this difficulty, because any RM is only a proxy for human evaluation, this process is vulnerable to $\textit{overoptimization}$, wherein past a certain point, accumulating higher reward is associated with worse human ratings. In this paper, we perform, to our knowledge, the first study on overoptimization in composite RMs, showing that correlation between component RMs has a significant effect on the locations of these points. We then introduce an approach to solve this issue using constrained reinforcement learning as a means of preventing the agent from exceeding each RM's threshold of usefulness. Our method addresses the problem of weighting component RMs by learning dynamic weights, naturally expressed by Lagrange multipliers. As a result, each RM stays within the range at which it is an effective proxy, improving evaluation performance. Finally, we introduce an adaptive method using gradient-free optimization to identify and optimize towards these points during a single run.
Game-Theoretic Robust Reinforcement Learning Handles Temporally-Coupled Perturbations
Liang, Yongyuan, Sun, Yanchao, Zheng, Ruijie, Liu, Xiangyu, Sandholm, Tuomas, Huang, Furong, McAleer, Stephen
Robust reinforcement learning (RL) seeks to train policies that can perform well under environment perturbations or adversarial attacks. Existing approaches typically assume that the space of possible perturbations remains the same across timesteps. However, in many settings, the space of possible perturbations at a given timestep depends on past perturbations. We formally introduce temporally-coupled perturbations, presenting a novel challenge for existing robust RL methods. To tackle this challenge, we propose GRAD, a novel game-theoretic approach that treats the temporally-coupled robust RL problem as a partially-observable two-player zero-sum game. By finding an approximate equilibrium in this game, GRAD ensures the agent's robustness against temporally-coupled perturbations. Empirical experiments on a variety of continuous control tasks demonstrate that our proposed approach exhibits significant robustness advantages compared to baselines against both standard and temporally-coupled attacks, in both state and action spaces.