Mazor, Shai
DocVLM: Make Your VLM an Efficient Reader
Nacson, Mor Shpigel, Aberdam, Aviad, Ganz, Roy, Avraham, Elad Ben, Golts, Alona, Kittenplon, Yair, Mazor, Shai, Litman, Ron
Vision-Language Models (VLMs) excel in diverse visual tasks but face challenges in document understanding, which requires fine-grained text processing. While typical visual tasks perform well with low-resolution inputs, reading-intensive applications demand high-resolution, resulting in significant computational overhead. Using OCR-extracted text in VLM prompts partially addresses this issue but underperforms compared to full-resolution counterpart, as it lacks the complete visual context needed for optimal performance. We introduce DocVLM, a method that integrates an OCR-based modality into VLMs to enhance document processing while preserving original weights. Our approach employs an OCR encoder to capture textual content and layout, compressing these into a compact set of learned queries incorporated into the VLM. Comprehensive evaluations across leading VLMs show that DocVLM significantly reduces reliance on high-resolution images for document understanding. In limited-token regimes (448$\times$448), DocVLM with 64 learned queries improves DocVQA results from 56.0% to 86.6% when integrated with InternVL2 and from 84.4% to 91.2% with Qwen2-VL. In LLaVA-OneVision, DocVLM achieves improved results while using 80% less image tokens. The reduced token usage allows processing multiple pages effectively, showing impressive zero-shot results on DUDE and state-of-the-art performance on MP-DocVQA, highlighting DocVLM's potential for applications requiring high-performance and efficiency.
CLIPTER: Looking at the Bigger Picture in Scene Text Recognition
Aberdam, Aviad, Bensaรฏd, David, Golts, Alona, Ganz, Roy, Nuriel, Oren, Tichauer, Royee, Mazor, Shai, Litman, Ron
Reading text in real-world scenarios often requires understanding the context surrounding it, especially when dealing with poor-quality text. However, current scene text recognizers are unaware of the bigger picture as they operate on cropped text images. In this study, we harness the representative capabilities of modern vision-language models, such as CLIP, to provide scene-level information to the crop-based recognizer. We achieve this by fusing a rich representation of the entire image, obtained from the vision-language model, with the recognizer word-level features via a gated cross-attention mechanism. This component gradually shifts to the context-enhanced representation, allowing for stable fine-tuning of a pretrained recognizer. We demonstrate the effectiveness of our model-agnostic framework, CLIPTER (CLIP TExt Recognition), on leading text recognition architectures and achieve state-of-the-art results across multiple benchmarks. Furthermore, our analysis highlights improved robustness to out-of-vocabulary words and enhanced generalization in low-data regimes.
Towards Models that Can See and Read
Ganz, Roy, Nuriel, Oren, Aberdam, Aviad, Kittenplon, Yair, Mazor, Shai, Litman, Ron
Visual Question Answering (VQA) and Image Captioning (CAP), which are among the most popular vision-language tasks, have analogous scene-text versions that require reasoning from the text in the image. Despite their obvious resemblance, the two are treated independently and, as we show, yield task-specific methods that can either see or read, but not both. In this work, we conduct an in-depth analysis of this phenomenon and propose UniTNT, a Unified Text-Non-Text approach, which grants existing multimodal architectures scene-text understanding capabilities. Specifically, we treat scene-text information as an additional modality, fusing it with any pretrained encoder-decoder-based architecture via designated modules. Thorough experiments reveal that UniTNT leads to the first single model that successfully handles both task types. Moreover, we show that scene-text understanding capabilities can boost vision-language models' performance on general VQA and CAP by up to 2.69% and 0.6 CIDEr, respectively.