Goto

Collaborating Authors

 Mayr, Philipp


Annotating Scientific Uncertainty: A comprehensive model using linguistic patterns and comparison with existing approaches

arXiv.org Artificial Intelligence

UnScientify, a system designed to detect scientific uncertainty in scholarly full text. The system utilizes a weakly supervised technique to identify verbally expressed uncertainty in scientific texts and their authorial references. The core methodology of UnScientify is based on a multi-faceted pipeline that integrates span pattern matching, complex sentence analysis and author reference checking. This approach streamlines the labeling and annotation processes essential for identifying scientific uncertainty, covering a variety of uncertainty expression types to support diverse applications including information retrieval, text mining and scientific document processing. The evaluation results highlight the trade-offs between modern large language models (LLMs) and the UnScientify system. UnScientify, which employs more traditional techniques, achieved superior performance in the scientific uncertainty detection task, attaining an accuracy score of 0.808. This finding underscores the continued relevance and efficiency of UnScientify's simple rule-based and pattern matching strategy for this specific application. The results demonstrate that in scenarios where resource efficiency, interpretability, and domain-specific adaptability are critical, traditional methods can still offer significant advantages.


Originality in scientific titles and abstracts can predict citation count

arXiv.org Artificial Intelligence

In this research-in-progress paper, we apply a computational measure correlating with originality from creativity science: Divergent Semantic Integration (DSI), to a selection of 99,557 scientific abstracts and titles selected from the Web of Science. We observe statistically significant differences in DSI between subject and field of research, and a slight rise in DSI over time. We model the base 10 logarithm of the citation count after 5 years with DSI and find a statistically significant positive correlation in all fields of research with an adjusted $R^2$ of 0.13.


VADIS -- a VAriable Detection, Interlinking and Summarization system

arXiv.org Artificial Intelligence

The VADIS system addresses the demand of providing enhanced information access in the domain of the social sciences. This is achieved by allowing users to search and use survey variables in context of their underlying research data and scholarly publications which have been interlinked with each other.


UnScientify: Detecting Scientific Uncertainty in Scholarly Full Text

arXiv.org Artificial Intelligence

This demo paper presents UnScientify, an interactive system designed to detect scientific uncertainty in scholarly full text. The system utilizes a weakly supervised technique that employs a fine-grained annotation scheme to identify verbally formulated uncertainty at the sentence level in scientific texts. The pipeline for the system includes a combination of pattern matching, complex sentence checking, and authorial reference checking. Our approach automates labeling and annotation tasks for scientific uncertainty identification, taking into account different types of scientific uncertainty, that can serve various applications such as information retrieval, text mining, and scholarly document processing. Additionally, UnScientify provides interpretable results, aiding in the comprehension of identified instances of scientific uncertainty in text.


Embedding Models for Supervised Automatic Extraction and Classification of Named Entities in Scientific Acknowledgements

arXiv.org Artificial Intelligence

Acknowledgments in scientific papers may give an insight into aspects of the scientific community, such as reward systems, collaboration patterns, and hidden research trends. The aim of the paper is to evaluate the performance of different embedding models for the task of automatic extraction and classification of acknowledged entities from the acknowledgment text in scientific papers. We trained and implemented a named entity recognition (NER) task using the Flair NLP framework. The training was conducted using three default Flair NER models with four differently-sized corpora and different versions of the Flair NLP framework. The Flair Embeddings model trained on the medium corpus with the latest FLAIR version showed the best accuracy of 0.79. Expanding the size of a training corpus from very small to medium size massively increased the accuracy of all training algorithms, but further expansion of the training corpus did not bring further improvement. Moreover, the performance of the model slightly deteriorated. Our model is able to recognize six entity types: funding agency, grant number, individuals, university, corporation, and miscellaneous. The model works more precisely for some entity types than for others; thus, individuals and grant numbers showed a very good F1-Score over 0.9. Most of the previous works on acknowledgment analysis were limited by the manual evaluation of data and therefore by the amount of processed data. This model can be applied for the comprehensive analysis of acknowledgment texts and may potentially make a great contribution to the field of automated acknowledgment analysis.


Which Factors are associated with Open Access Publishing? A Springer Nature Case Study

arXiv.org Artificial Intelligence

Open Access (OA) facilitates access to articles. But, authors or funders often must pay the publishing costs preventing authors who do not receive financial support from participating in OA publishing and citation advantage for OA articles. OA may exacerbate existing inequalities in the publication system rather than overcome them. To investigate this, we studied 522,411 articles published by Springer Nature. Employing correlation and regression analyses, we describe the relationship between authors affiliated with countries from different income levels, their choice of publishing model, and the citation impact of their papers. A machine learning classification method helped us to explore the importance of different features in predicting the publishing model. The results show that authors eligible for APC waivers publish more in gold-OA journals than others. In contrast, authors eligible for an APC discount have the lowest ratio of OA publications, leading to the assumption that this discount insufficiently motivates authors to publish in gold-OA journals. We found a strong correlation between the journal rank and the publishing model in gold-OA journals, whereas the OA option is mostly avoided in hybrid journals. Also, results show that the countries' income level, seniority, and experience with OA publications are the most predictive factors for OA publishing in hybrid journals.


A Comprehensive Analysis of Acknowledgement Texts in Web of Science: a case study on four scientific domains

arXiv.org Artificial Intelligence

Analysis of acknowledgments is particularly interesting as acknowledgments may give information not only about funding, but they are also able to reveal hidden contributions to authorship and the researcher's collaboration patterns, context in which research was conducted, and specific aspects of the academic work. The focus of the present research is the analysis of a large sample of acknowledgement texts indexed in the Web of Science (WoS) Core Collection. Record types 'article' and 'review' from four different scientific domains, namely social sciences, economics, oceanography and computer science, published from 2014 to 2019 in a scientific journal in English were considered. Six types of acknowledged entities, i.e., funding agency, grant number, individuals, university, corporation and miscellaneous, were extracted from the acknowledgement texts using a Named Entity Recognition (NER) tagger and subsequently examined. A general analysis of the acknowledgement texts showed that indexing of funding information in WoS is incomplete. The analysis of the automatically extracted entities revealed differences and distinct patterns in the distribution of acknowledged entities of different types between different scientific domains. A strong association was found between acknowledged entity and scientific domain and acknowledged entity and entity type. Only negligible correlation was found between the number of citations and the number of acknowledged entities. Generally, the number of words in the acknowledgement texts positively correlates with the number of acknowledged funding organizations, universities, individuals and miscellaneous entities. At the same time, acknowledgement texts with the larger number of sentences have more acknowledged individuals and miscellaneous categories.