Goto

Collaborating Authors

 May, Jonathan


Speechworthy Instruction-tuned Language Models

arXiv.org Artificial Intelligence

Current instruction-tuned language models are exclusively trained with textual preference data and thus are often not aligned with the unique requirements of other modalities, such as speech. To better align language models with the speech domain, we explore (i) prompting strategies grounded in radio-industry best practices and (ii) preference learning using a novel speech-based preference data of 20K samples, generated with a wide spectrum of prompts that induce varying dimensions of speech-suitability and labeled by annotators who listen to response pairs. Both human and automatic evaluation show that both prompting and preference learning increase the speech-suitability of popular instruction-tuned LLMs. Interestingly, we find that prompting and preference learning can be additive; combining them achieves the best win rates in head-to-head comparison, resulting in responses that are preferred or tied to the base model in 76.2% of comparisons on average. Lastly, we share lexical, syntactical, and qualitative analyses to showcase how each method contributes to improving the speech-suitability of generated responses.


Are Large Language Models Capable of Generating Human-Level Narratives?

arXiv.org Artificial Intelligence

This paper investigates the capability of LLMs in storytelling, focusing on narrative development and plot progression. We introduce a novel computational framework to analyze narratives through three discourse-level aspects: i) story arcs, ii) turning points, and iii) affective dimensions, including arousal and valence. By leveraging expert and automatic annotations, we uncover significant discrepancies between the LLM- and human- written stories. While human-written stories are suspenseful, arousing, and diverse in narrative structures, LLM stories are homogeneously positive and lack tension. Next, we measure narrative reasoning skills as a precursor to generative capacities, concluding that most LLMs fall short of human abilities in discourse understanding. Finally, we show that explicit integration of aforementioned discourse features can enhance storytelling, as is demonstrated by over 40% improvement in neural storytelling in terms of diversity, suspense, and arousal.


Style Transfer with Multi-iteration Preference Optimization

arXiv.org Artificial Intelligence

Numerous recent techniques for text style transfer characterize their approaches as variants of reinforcement learning and preference optimization. In this work, we consider the relationship between these approaches and a class of optimization approaches developed primarily for (non-neural) statistical machine translation, formerly known as 'tuning'. Inspired by these techniques from the past, we improve upon established preference optimization approaches, incorporating multiple iterations of exploration and optimization, and choosing contrastive examples by following a 'hope' vs 'fear' sampling strategy. Cognizant of the difference between machine translation and style transfer, however, we further tailor our framework with a new pseudo-parallel generation method and a dynamic weighted reward aggregation method to tackle the lack of parallel data and the need for a multi-objective reward. We evaluate our model on two commonly used text style transfer datasets. Through automatic and human evaluation results we show the effectiveness and the superiority of our model compared to state-of-the-art baselines.


GNOME: Generating Negotiations through Open-Domain Mapping of Exchanges

arXiv.org Artificial Intelligence

Language Models have previously shown strong negotiation capabilities in closed domains where the negotiation strategy prediction scope is constrained to a specific setup. In this paper, we first show that these models are not generalizable beyond their original training domain despite their wide-scale pretraining. Following this, we propose an automated framework called GNOME, which processes existing human-annotated, closed-domain datasets using Large Language Models and produces synthetic open-domain dialogues for negotiation. GNOME improves the generalizability of negotiation systems while reducing the expensive and subjective task of manual data curation. Through our experimental setup, we create a benchmark comparing encoder and decoder models trained on existing datasets against datasets created through GNOME. Our results show that models trained on our dataset not only perform better than previous state of the art models on domain specific strategy prediction, but also generalize better to previously unseen domains.


More Victories, Less Cooperation: Assessing Cicero's Diplomacy Play

arXiv.org Artificial Intelligence

The boardgame Diplomacy is a challenging setting for communicative and cooperative artificial intelligence. The most prominent communicative Diplomacy AI, Cicero, has excellent strategic abilities, exceeding human players. However, the best Diplomacy players master communication, not just tactics, which is why the game has received attention as an AI challenge. This work seeks to understand the degree to which Cicero succeeds at communication. First, we annotate in-game communication with abstract meaning representation to separate in-game tactics from general language. Second, we run two dozen games with humans and Cicero, totaling over 200 human-player hours of competition. While AI can consistently outplay human players, AI-Human communication is still limited because of AI's difficulty with deception and persuasion. This shows that Cicero relies on strategy and has not yet reached the full promise of communicative and cooperative AI.


Megalodon: Efficient LLM Pretraining and Inference with Unlimited Context Length

arXiv.org Artificial Intelligence

The quadratic complexity and weak length extrapolation of Transformers limits their ability to scale to long sequences, and while sub-quadratic solutions like linear attention and state space models exist, they empirically underperform Transformers in pretraining efficiency and downstream task accuracy. We introduce Megalodon, a neural architecture for efficient sequence modeling with unlimited context length. Megalodon inherits the architecture of Mega (exponential moving average with gated attention), and further introduces multiple technical components to improve its capability and stability, including complex exponential moving average (CEMA), timestep normalization layer, normalized attention mechanism and pre-norm with two-hop residual configuration. In a controlled head-to-head comparison with Llama2, Megalodon achieves better efficiency than Transformer in the scale of 7 billion parameters and 2 trillion training tokens. Megalodon reaches a training loss of 1.70, landing mid-way between Llama2-7B (1.75) and 13B (1.67). Code: https://github.com/XuezheMax/megalodon


Authorship Style Transfer with Policy Optimization

arXiv.org Artificial Intelligence

Authorship style transfer aims to rewrite a given text into a specified target while preserving the original meaning in the source. Existing approaches rely on the availability of a large number of target style exemplars for model training. However, these overlook cases where a limited number of target style examples are available. The development of parameter-efficient transfer learning techniques and policy optimization (PO) approaches suggest lightweight PO is a feasible approach to low-resource style transfer. In this work, we propose a simple two step tune-and-optimize technique for low-resource textual style transfer. We apply our technique to authorship transfer as well as a larger-data native language style task and in both cases find it outperforms state-of-the-art baseline models.


Cross-lingual Lifelong Learning

arXiv.org Artificial Intelligence

The longstanding goal of multi-lingual learning has been to develop a universal cross-lingual model that can withstand the changes in multilingual data distributions. There has been a large amount of work to adapt such multilingual models to unseen target languages. However, the majority of work in this direction focuses on the standard one-hop transfer learning pipeline from source to target languages, Figure 1: An overview of CCL: We use an example whereas in realistic scenarios, new languages of a non-stationary datastream moving from high to can be incorporated at any time in a sequential low resource languages. Each bold and dashed box manner. In this paper, we present a principled represents either a training or test data instance being Cross-lingual Continual Learning (CCL) evaluation fine-tuned or evaluated on, respectively. To support this paradigm, where we analyze different categories problem setup, we evaluate the cross-lingual capabilities of approaches used to continually adapt of continual approaches. Those capabilities include to emerging data from different languages. We knowledge preservation on old languages, accumulation provide insights into what makes multilingual to the current language, and generalization to sequential learning particularly challenging.


Continual Dialogue State Tracking via Example-Guided Question Answering

arXiv.org Artificial Intelligence

Dialogue systems are frequently updated to accommodate new services, but naively updating them by continually training with data for new services in diminishing performance on previously learnt services. Motivated by the insight that dialogue state tracking (DST), a crucial component of dialogue systems that estimates the user's goal as a conversation proceeds, is a simple natural language understanding task, we propose reformulating it as a bundle of granular example-guided question answering tasks to minimize the task shift between services and thus benefit continual learning. Our approach alleviates service-specific memorization and teaches a model to contextualize the given question and example to extract the necessary information from the conversation. We find that a model with just 60M parameters can achieve a significant boost by learning to learn from in-context examples retrieved by a retriever trained to identify turns with similar dialogue state changes. Combining our method with dialogue-level memory replay, our approach attains state of the art performance on DST continual learning metrics without relying on any complex regularization or parameter expansion methods.


Tracking the Newsworthiness of Public Documents

arXiv.org Artificial Intelligence

Journalists must find stories in huge amounts of textual data (e.g. leaks, bills, press releases) as part of their jobs: determining when and why text becomes news can help us understand coverage patterns and help us build assistive tools. Yet, this is challenging because very few labelled links exist, language use between corpora is very different, and text may be covered for a variety of reasons. In this work we focus on news coverage of local public policy in the San Francisco Bay Area by the San Francisco Chronicle. First, we gather news articles, public policy documents and meeting recordings and link them using probabilistic relational modeling, which we show is a low-annotation linking methodology that outperforms other retrieval-based baselines. Second, we define a new task: newsworthiness prediction, to predict if a policy item will get covered. We show that different aspects of public policy discussion yield different newsworthiness signals. Finally we perform human evaluation with expert journalists and show our systems identify policies they consider newsworthy with 68% F1 and our coverage recommendations are helpful with an 84% win-rate.