Mavi, Vaibhav
Multi-hop Question Answering
Mavi, Vaibhav, Jangra, Anubhav, Jatowt, Adam
The task of Question Answering (QA) has attracted significant research interest for long. Its relevance to language understanding and knowledge retrieval tasks, along with the simple setting makes the task of QA crucial for strong AI systems. Recent success on simple QA tasks has shifted the focus to more complex settings. Among these, Multi-Hop QA (MHQA) is one of the most researched tasks over the recent years. In broad terms, MHQA is the task of answering natural language questions that involve extracting and combining multiple pieces of information and doing multiple steps of reasoning. An example of a multi-hop question would be "The Argentine PGA Championship record holder has won how many tournaments worldwide?". Answering the question would need two pieces of information: "Who is the record holder for Argentine PGA Championship tournaments?" and "How many tournaments did [Answer of Sub Q1] win?". The ability to answer multi-hop questions and perform multi step reasoning can significantly improve the utility of NLP systems. Consequently, the field has seen a surge with high quality datasets, models and evaluation strategies. The notion of 'multiple hops' is somewhat abstract which results in a large variety of tasks that require multi-hop reasoning. This leads to different datasets and models that differ significantly from each other and makes the field challenging to generalize and survey. We aim to provide a general and formal definition of the MHQA task, and organize and summarize existing MHQA frameworks. We also outline some best practices for building MHQA datasets. This book provides a systematic and thorough introduction as well as the structuring of the existing attempts to this highly interesting, yet quite challenging task.
Retrieval-Augmented Chain-of-Thought in Semi-structured Domains
Mavi, Vaibhav, Saparov, Abulhair, Zhao, Chen
Applying existing question answering (QA) systems to specialized domains like law and finance presents challenges that necessitate domain expertise. Although large language models (LLMs) have shown impressive language comprehension and in-context learning capabilities, their inability to handle very long inputs/contexts is well known. Tasks specific to these domains need significant background knowledge, leading to contexts that can often exceed the maximum length that existing LLMs can process. This study explores leveraging the semi-structured nature of legal and financial data to efficiently retrieve relevant context, enabling the use of LLMs for domain-specialized QA. The resulting system outperforms contemporary models and also provides useful explanations for the answers, encouraging the integration of LLMs into legal and financial NLP systems for future research.