Goto

Collaborating Authors

 Mausam, null


Joint Spatio-Textual Reasoning for Answering Tourism Questions

arXiv.org Artificial Intelligence

Our goal is to answer real-world tourism questions that seek Points-of-Interest (POI) recommendations. Such questions express various kinds of spatial and non-spatial constraints, necessitating a combination of textual and spatial reasoning. In response, we develop the first joint spatio-textual reasoning model, which combines geo-spatial knowledge with information in textual corpora to answer questions. We first develop a modular spatial-reasoning network that uses geo-coordinates of location names mentioned in a question, and of candidate answer POIs, to reason over only spatial constraints. We then combine our spatial-reasoner with a textual reasoner in a joint model and present experiments on a real world POI recommendation task. We report substantial improvements over existing models with-out joint spatio-textual reasoning.


Neural Learning of One-of-Many Solutions for Combinatorial Problems in Structured Output Spaces

arXiv.org Machine Learning

Recent research has proposed neural architectures for solving combinatorial problems in structured output spaces. In many such problems, there may exist multiple solutions for a given input, e.g. a partially filled Sudoku puzzle may have many completions satisfying all constraints. Further, we are often interested in finding {\em any one} of the possible solutions, without any preference between them. Existing approaches completely ignore this solution multiplicity. In this paper, we argue that being oblivious to the presence of multiple solutions can severely hamper their training ability. Our contribution is two fold. First, we formally define the task of learning one-of-many solutions for combinatorial problems in structured output spaces, which is applicable for solving several problems of interest such as N-Queens, and Sudoku. Second, we present a generic learning framework that adapts an existing prediction network for a combinatorial problem to handle solution multiplicity. Our framework uses a selection module, whose goal is to dynamically determine, for every input, the solution that is most effective for training the network parameters in any given learning iteration. We propose an RL based approach to jointly train the selection module with the prediction network. Experiments on three different domains, and using two different prediction networks, demonstrate that our framework significantly improves the accuracy in our setting, obtaining up to $21$ pt gain over the baselines.


Knowledge Base Completion: Baseline strikes back (Again)

arXiv.org Artificial Intelligence

Knowledge Base Completion has been a very active area recently, where multiplicative models have generally outperformed additive and other deep learning methods -- like GNN, CNN, path-based models. Several recent KBC papers propose architectural changes, new training methods, or even a new problem reformulation. They evaluate their methods on standard benchmark datasets - FB15k, FB15k-237, WN18, WN18RR, and Yago3-10. Recently, some papers discussed how 1-N scoring can speed up training and evaluation. In this paper, we discuss how by just applying this training regime to a basic model like Complex gives near SOTA performance on all the datasets -- we call this model COMPLEX-V2. We also highlight how various multiplicative methods recently proposed in literature benefit from this trick and become indistinguishable in terms of performance on most datasets. This paper calls for a reassessment of their individual value, in light of these findings.


Large Scale Question Answering using Tourism Data

arXiv.org Artificial Intelligence

Real world question answering can be significantly more complex than what most existing QA datasets reflect. Questions posed by users on websites, such as online travel forums, may consist of multiple sentences and not everything mentioned in a question may be relevant for finding its answer. Such questions typically have a huge candidate answer space and require complex reasoning over large knowledge corpora. We introduce the novel task of answering entity-seeking recommendation questions using a collection of reviews that describe candidate answer entities. We harvest a QA dataset that contains 48,147 paragraph-sized real user questions from travelers seeking recommendations for hotels, attractions and restaurants. Each candidate answer is associated with a collection of unstructured reviews. This dataset is challenging because commonly used neural architectures for QA are prohibitively expensive for a task of this scale. As a solution, we design a scalable cluster-select-rerank approach. It first clusters text for each entity to identify exemplar sentences describing an entity. It then uses a scalable neural information retrieval (IR) module to subselect a set of potential entities from the large candidate set. A reranker uses a deeper attention-based architecture to pick the best answers from the selected entities. This strategy performs better than a pure IR or a pure attention-based reasoning approach yielding nearly 10% relative improvement in Accuracy@3 over both approaches.


Size Independent Neural Transfer for RDDL Planning

arXiv.org Machine Learning

Neural planners for RDDL MDPs produce deep reactive policies in an offline fashion. These scale well with large domains, but are sample inefficient and time-consuming to train from scratch for each new problem. To mitigate this, recent work has studied neural transfer learning, so that a generic planner trained on other problems of the same domain can rapidly transfer to a new problem. However, this approach only transfers across problems of the same size. We present the first method for neural transfer of RDDL MDPs that can transfer across problems of different sizes. Our architecture has two key innovations to achieve size independence: (1) a state encoder, which outputs a fixed length state embedding by max pooling over varying number of object embeddings, (2) a single parameter-tied action decoder that projects object embeddings into action probabilities for the final policy. On the two challenging RDDL domains of SysAdmin and Game Of Life, our approach powerfully transfers across problem sizes and has superior learning curves over training from scratch.


Block-Value Symmetries in Probabilistic Graphical Models

arXiv.org Artificial Intelligence

Several lifted inference algorithms for probabilistic graphical models first merge symmetric states into a single cluster (orbit) and then use these for downstream inference, via variations of orbital MCMC [Niepert, 2012]. These orbits are represented compactly using permutations over variables, and variable-value (VV) pairs, but these can miss several state symmetries in a domain. We define the notion of permutations over block-value (BV) pairs, where a block is a set of variables. BV strictly generalizes VV symmetries, and can compute many more symmetries for increasing block sizes. To operationalize use of BV permutations in lifted inference, we describe 1) an algorithm to compute BV permutations given a block partition of the variables, 2) BV-MCMC, an extension of orbital MCMC that can sample from BV orbits, and 3) a heuristic to suggest good block partitions. Our experiments show that BV-MCMC can mix much faster compared to vanilla MCMC and orbital MCMC over VV permutations.


Hierarchical Pointer Memory Network for Task Oriented Dialogue

arXiv.org Machine Learning

We observe that end-to-end memory networks (MN) trained for task-oriented dialogue, such as for recommending restaurants to a user, suffer from an out-of-vocabulary (OOV) problem -- the entities returned by the Knowledge Base (KB) may not be seen by the network at training time, making it impossible for it to use them in dialogue. We propose a Hierarchical Pointer Memory Network (HyP-MN), in which the next word may be generated from the decode vocabulary or copied from a hierarchical memory maintaining KB results and previous utterances. Evaluating over the dialog bAbI tasks, we find that HyP-MN drastically outperforms MN obtaining 12% overall accuracy gains. Further analysis reveals that MN fails completely in recommending any relevant restaurant, whereas HyP-MN recommends the best next restaurant 80% of the time.


Octopus: A Framework for Cost-Quality-Time Optimization in Crowdsourcing

arXiv.org Artificial Intelligence

We present Octopus, an AI agent to jointly balance three conflicting task objectives on a micro-crowdsourcing marketplace - the quality of work, total cost incurred, and time to completion. Previous control agents have mostly focused on cost-quality, or cost-time tradeoffs, but not on directly controlling all three in concert. A naive formulation of three-objective optimization is intractable; Octopus takes a hierarchical POMDP approach, with three different components responsible for setting the pay per task, selecting the next task, and controlling task-level quality. We demonstrate that Octopus significantly outperforms existing state-of-the-art approaches on real experiments. We also deploy Octopus on Amazon Mechanical Turk, showing its ability to manage tasks in a real-world dynamic setting.


A Heuristic Search Approach to Planning with Continuous Resources in Stochastic Domains

arXiv.org Artificial Intelligence

We consider the problem of optimal planning in stochastic domains with resource constraints, where the resources are continuous and the choice of action at each step depends on resource availability. We introduce the HAO* algorithm, a generalization of the AO* algorithm that performs search in a hybrid state space that is modeled using both discrete and continuous state variables, where the continuous variables represent monotonic resources. Like other heuristic search algorithms, HAO* leverages knowledge of the start state and an admissible heuristic to focus computational effort on those parts of the state space that could be reached from the start state by following an optimal policy. We show that this approach is especially effective when resource constraints limit how much of the state space is reachable. Experimental results demonstrate its effectiveness in the domain that motivates our research: automated planning for planetary exploration rovers.