Maurya, Kailash Singh
Combining Open-box Simulation and Importance Sampling for Tuning Large-Scale Recommenders
Paneri, Kaushal, Munje, Michael, Maurya, Kailash Singh, Swaminathan, Adith, Shi, Yifan
Growing scale of recommender systems require extensive tuning to respond to market dynamics and system changes. We address the challenge of tuning a large-scale ads recommendation platform with multiple continuous parameters influencing key performance indicators (KPIs). Traditional methods like open-box Monte Carlo simulators, while accurate, are computationally expensive due to the high cost of evaluating numerous parameter settings. To mitigate this, we propose a hybrid approach Simulator-Guided Importance Sampling (SGIS) that combines open-box simulation with importance sampling (IS). SGIS leverages the strengths of both techniques: it performs a coarse enumeration over the parameter space to identify promising initial settings and then uses IS to iteratively refine these settings. This approach significantly reduces computational costs while maintaining high accuracy in KPI estimation. We demonstrate the effectiveness of SGIS through simulations as well as real-world experiments, showing that it achieves substantial improvements in KPIs with lower computational overhead compared to traditional methods.
Adaptive Mixture Importance Sampling for Automated Ads Auction Tuning
Jia, Yimeng, Paneri, Kaushal, Huang, Rong, Maurya, Kailash Singh, Mallapragada, Pavan, Shi, Yifan
This paper introduces Adaptive Mixture Importance Sampling (AMIS) as a novel approach for optimizing key performance indicators (KPIs) in large-scale recommender systems, such as online ad auctions. Traditional importance sampling (IS) methods face challenges in dynamic environments, particularly in navigating through complexities of multi-modal landscapes and avoiding entrapment in local optima for the optimization task. Instead of updating importance weights and mixing samples across iterations, as in canonical adaptive IS and multiple IS, our AMIS framework leverages a mixture distribution as the proposal distribution and dynamically adjusts both the mixture parameters and their mixing rates at each iteration, thereby enhancing search diversity and efficiency. Through extensive offline simulations, we demonstrate that AMIS significantly outperforms simple Gaussian Importance Sampling (GIS), particularly in noisy environments. Moreover, our approach is validated in real-world scenarios through online A/B experiments on a major search engine, where AMIS consistently identifies optimal tuning points that are more likely to be adopted as mainstream configurations. These findings indicate that AMIS enhances convergence in noisy environments, leading to more accurate and reliable decision-making in the context of importance sampling off-policy estimators.