Maudet, Nicolas
Perspectives for Direct Interpretability in Multi-Agent Deep Reinforcement Learning
Poupart, Yoann, Beynier, Aurélie, Maudet, Nicolas
Multi-Agent Deep Reinforcement Learning (MADRL) was proven efficient in solving complex problems in robotics or games, yet most of the trained models are hard to interpret. While learning intrinsically interpretable models remains a prominent approach, its scalability and flexibility are limited in handling complex tasks or multi-agent dynamics. This paper advocates for direct interpretability, generating post hoc explanations directly from trained models, as a versatile and scalable alternative, offering insights into agents' behaviour, emergent phenomena, and biases without altering models' architectures. We explore modern methods, including relevance backpropagation, knowledge edition, model steering, activation patching, sparse autoencoders and circuit discovery, to highlight their applicability to single-agent, multi-agent, and training process challenges. By addressing MADRL interpretability, we propose directions aiming to advance active topics such as team identification, swarm coordination and sample efficiency.
Fair in the Eyes of Others
Shams, Parham (LIP6, Sorbonne Université) | Beynier, Aurélie | Bouveret, Sylvain (LIG, Université Grenoble Alpes) | Maudet, Nicolas (LIP6, Sorbonne University)
Envy-freeness is a widely studied notion in resource allocation, capturing some aspects of fairness. The notion of envy being inherently subjective though, it might be the case that an agent envies another agent, but that from the other agents' point of view, she has no reason to do so. The difficulty here is to define the notion of objectivity, since no ground-truth can properly serve as a basis of this definition. A natural approach is to consider the judgement of the other agents as a proxy for objectivity. Building on previous work by Parijs (who introduced "unanimous envy") we propose the notion of approval envy: an agent ai experiences approval envy towards aj if she is envious of aj, and sufficiently many agents agree that this should be the case, from their own perspectives. Another thoroughly studied notion in resource allocation is proportionality. The same variant can be studied, opening natural questions regarding the links between these two notions. We exhibit several properties of these notions. Computing the minimal threshold guaranteeing approval envy and approval non-proportionality clearly inherits well-known intractable results from envy-freeness and proportionality, but (i) we identify some tractable cases such as house allocation; and (ii) we provide a general method based on a mixed integer programming encoding of the problem, which proves to be efficient in practice. This allows us in particular to show experimentally that existence of such allocations, with a rather small threshold, is very often observed.
House Markets and Single-Peaked Preferences: From Centralized to Decentralized Allocation Procedures
Beynier, Aurélie, Maudet, Nicolas, Rey, Simon, Shams, Parham
Recently, the problem of allocating one resource per agent with initial endowments (\emph{house markets}) has seen a renewed interest: indeed, while in the general domain Top Trading Cycle is known to be the only procedure guaranteeing Pareto-optimality, individual rationality, and strategy proofness, the situation differs in single-peaked domains. Bade (2019) presented the Crawler, an alternative procedure enjoying the same properties (with the additional advantage of being implementable in obviously dominant strategies); while Damamme et al. (2015) showed that allowing mutually beneficial swap-deals among the agents was already enough to guarantee Pareto-optimality. In this paper we significantly deepen our understanding of this decentralized procedures: we show in particular that the single-peaked domains happen to be ``maximal'' if one wishes to guarantee this convergence property. Interestingly, we also observe that the set of allocations reachable by swap-deals always contains the outcome of the Crawler. To further investigate how these different mechanisms compare, we pay special attention to the average and minimum rank of the resource obtained by the agents in the outcome allocation. We provide theoretical bounds on the loss potentially induced by these procedures with respect to these criteria, and complement these results with an extensive experimental study which shows how different variants of swap dynamics behave. In fact, even the simplest dynamics exhibit very good results, and it is possible to further guide the process towards our objectives, if one is ready to sacrifice a bit in terms of decentralization. On our way, we also show that a simple variant of the Crawler allows to check efficiently that an allocation is Pareto-optimal in single-peaked domains.
Efficiency, Sequenceability and Deal-Optimality in Fair Division of Indivisible Goods
Beynier, Aurélie, Bouveret, Sylvain, Lemaître, Michel, Maudet, Nicolas, Rey, Simon
In fair division of indivisible goods, using sequences of sincere choices (or picking sequences) is a natural way to allocate the objects. The idea is as follows: at each stage, a designated agent picks one object among those that remain. Another intuitive way to obtain an allocation is to give objects to agents in the first place, and to let agents exchange them as long as such "deals" are beneficial. This paper investigates these notions, when agents have additive preferences over objects, and unveils surprising connections between them, and with other efficiency and fairness notions. In particular, we show that an allocation is sequenceable iff it is optimal for a certain type of deals, namely cycle deals involving a single object. Furthermore, any Pareto-optimal allocation is sequenceable, but not the converse. Regarding fairness, we show that an allocation can be envy-free and non-sequenceable, but that every competitive equilibrium with equal incomes is sequenceable. To complete the picture, we show how some domain restrictions may affect the relations between these notions. Finally, we experimentally explore the links between the scales of efficiency and fairness.
Rationalisation of Profiles of Abstract Argumentation Frameworks: Characterisation and Complexity
Airiau, Stéphane, Bonzon, Elise, Endriss, Ulle, Maudet, Nicolas, Rossit, Julien
Different agents may have different points of view. Following a popular approach in the artificial intelligence literature, this can be modelled by means of different abstract argumentation frameworks, each consisting of a set of arguments the agent is contemplating and a binary attack-relation between them. A question arising in this context is whether the diversity of views observed in such a profile of argumentation frameworks is consistent with the assumption that every individual argumentation framework is induced by a combination of, first, some basic factual attack-relation between the arguments and, second, the personal preferences of the agent concerned regarding the moral or social values the arguments under scrutiny relate to. We treat this question of rationalisability of a profile as an algorithmic problem and identify tractable and intractable cases. In doing so, we distinguish different constraints on admissible rationalisations, e.g., concerning the types of preferences used or the number of distinct values involved. We also distinguish two different semantics for rationalisability, which differ in the assumptions made on how agents treat attacks between arguments they do not report. This research agenda, bringing together ideas from abstract argumentation and social choice, is useful for understanding what types of profiles can reasonably be expected to occur in a multiagent system.
A Comparative Study of Ranking-Based Semantics for Abstract Argumentation
Bonzon, Elise (LIPADE, Université Paris Descartes) | Delobelle, Jérôme (CRIL, CNRS - Université d'Artois) | Konieczny, Sébastien (CRIL, CNRS - Université d'Artois) | Maudet, Nicolas (Sorbonne Université UPMC Université Paris 06)
Argumentation is a process of evaluating and comparing a set of arguments. A way to compare them consists in using a ranking-based semantics which rank-order arguments from the most to the least acceptable ones. Recently, a number of such semantics have been pro- posed independently, often associated with some desirable properties. However, there is no comparative study which takes a broader perspective. This is what we propose in this work. We provide a general comparison of all these semantics with respect to the proposed proper- ties. That allows to underline the differences of behavior between the existing semantics.
New Results on Equilibria in Strategic Candidacy
Lang, Jérôme, Maudet, Nicolas, Polukarov, Maria, Cohen-Hadria, Alice
We consider a voting setting where candidates have preferences about the outcome of the election and are free to join or leave the election. The corresponding candidacy game, where candidates choose strategically to participate or not, has been studied %initially by Dutta et al., who showed that no non-dictatorial voting procedure satisfying unanimity is candidacy-strategyproof, that is, is such that the joint action where all candidates enter the election is always a pure strategy Nash equilibrium. Dutta et al. also showed that for some voting tree procedures, there are candidacy games with no pure Nash equilibria, and that for the rule that outputs the sophisticated winner of voting by successive elimination, all games have a pure Nash equilibrium. No results were known about other voting rules. Here we prove several such results. For four candidates, the message is, roughly, that most scoring rules (with the exception of Borda) do not guarantee the existence of a pure Nash equilibrium but that Condorcet-consistent rules, for an odd number of voters, do. For five candidates, most rules we study no longer have this guarantee. Finally, we identify one prominent rule that guarantees the existence of a pure Nash equilibrium for any number of candidates (and for an odd number of voters): the Copeland rule. We also show that under mild assumptions on the voting rule, the existence of strong equilibria cannot be guaranteed.
Formal Analysis of Dialogues on Infinite Argumentation Frameworks
Belardinelli, Francesco (Université d'Evry) | Grossi, Davide (University of Liverpool) | Maudet, Nicolas (Sorbonne Universités, UPMC University of Paris 06, CNRS, UMR 7606, LIP6)
The paper analyses multi-agent strategic dialogues on possibly infinite argumentation frameworks. We develop a formal model for representing such dialogues, and introduce FO A -ATL, a first-order extension of alternating-time logic, for expressing the interplay of strategic and argumentation-theoretic properties. This setting is investigated with respect to the model checking problem, by means of a suitable notion of bisimulation. This notion of bisimulation is also used to shed light on how static properties of argumentation frameworks influence their dynamic behaviour.
A Framework for Aggregating Influenced CP-Nets and its Resistance to Bribery
Maran, Alberto (University of Padova) | Maudet, Nicolas (LIP6, UPMC, Paris) | Pini, Maria Silvia (University of Padova) | Rossi, Francesca (University of Padova) | Venable, Kristen Brent (Tulane University and IHMC)
We consider multi-agent settings where a set of agents want to take a collective decision, based on their preferences over the possible candidate options. While agents have their initial inclination, they may interact and influence each other, and therefore modify their preferences, until hopefully they reach a stable state and declare their final inclination. At that point, a voting rule is used to aggregate the agents’ preferences and generate the collective decision. Recent work has modeled the influence phenomenon in the case of voting over a single issue. Here we generalize this model to account for preferences over combinatorially structured domains including several issues. We propose a way to model influence when agents express their preferences as CP-nets. We define two procedures for aggregating preferences in this scenario, by interleaving voting and influence convergence, and study their resistance to bribery.
New Candidates Welcome! Possible Winners with respect to the Addition of New Candidates
Chevaleyre, Yann, Lang, Jérôme, Maudet, Nicolas, Monnot, Jérôme, Xia, Lirong
In voting contexts, some new candidates may show up in the course of the process. In this case, we may want to determine which of the initial candidates are possible winners, given that a fixed number $k$ of new candidates will be added. We give a computational study of this problem, focusing on scoring rules, and we provide a formal comparison with related problems such as control via adding candidates or cloning.