Matthews, Iain
LLAniMAtion: LLAMA Driven Gesture Animation
Windle, Jonathan, Matthews, Iain, Taylor, Sarah
Co-speech gesturing is an important modality in conversation, providing context and social cues. In character animation, appropriate and synchronised gestures add realism, and can make interactive agents more engaging. Historically, methods for automatically generating gestures were predominantly audio-driven, exploiting the prosodic and speech-related content that is encoded in the audio signal. In this paper we instead experiment with using LLM features for gesture generation that are extracted from text using LLAMA2. We compare against audio features, and explore combining the two modalities in both objective tests and a user study. Surprisingly, our results show that LLAMA2 features on their own perform significantly better than audio features and that including both modalities yields no significant difference to using LLAMA2 features in isolation. We demonstrate that the LLAMA2 based model can generate both beat and semantic gestures without any audio input, suggesting LLMs can provide rich encodings that are well suited for gesture generation.
Characterizing Multi-Agent Team Behavior from Partial Team Tracings: Evidence from the English Premier League
Lucey, Patrick (Disney Research Pittsburgh) | Bialkowski, Alina (Queensland University of Technology and Disney Research Pittsburgh) | Carr, Peter (Disney Research Pittsburgh) | Foote, Eric (Disney Research Pittsburgh) | Matthews, Iain (Disney Research Pittsburgh)
Real-world AI systems have been recently deployed which can automatically analyze the plan and tactics of tennis players. As the game-state is updated regularly at short intervals (i.e. point-level), a library of successful and unsuccessful plans of a player can be learnt over time. Given the relative strengths and weaknesses of a player’s plans, a set of proven plans or tactics from the library that characterize a player can be identified. For low-scoring, continuous team sports like soccer, such analysis for multi-agent teams does not exist as the game is not segmented into “discretized” plays (i.e. plans), making it difficult to obtain a library that characterizes a team’s behavior. Additionally, as player tracking data is costly and difficult to obtain, we only have partial team tracings in the form of ball actions which makes this problem even more difficult. In this paper, we propose a method to overcome these issues by representing team behavior via play-segments, which are spatio-temporal descriptions of ball movement over fixed windows of time. Using these representations we can characterize team behavior from entropy maps, which give a measure of predictability of team behaviors across the field. We show the efficacy and applicability of our method on the 2010-2011 English Premier League soccer data.
Facial Expression Transfer with Input-Output Temporal Restricted Boltzmann Machines
Zeiler, Matthew D., Taylor, Graham W., Sigal, Leonid, Matthews, Iain, Fergus, Rob
We present a type of Temporal Restricted Boltzmann Machine that defines a probability distribution over an output sequence conditional on an input sequence. It shares the desirable properties of RBMs: efficient exact inference, an exponentially more expressive latent state than HMMs, and the ability to model nonlinear structure and dynamics. We apply our model to a challenging real-world graphics problem: facial expression transfer. Our results demonstrate improved performance over several baselines modeling high-dimensional 2D and 3D data.