Goto

Collaborating Authors

 Matthew Joseph




Fairness in Learning: Classic and Contextual Bandits

Neural Information Processing Systems

We introduce the study of fairness in multi-armed bandit problems. Our fairness definition demands that, given a pool of applicants, a worse applicant is never favored over a better one, despite a learning algorithm's uncertainty over the true payoffs. In the classic stochastic bandits problem we provide a provably fair algorithm based on "chained" confidence intervals, and prove a cumulative regret bound with a cubic dependence on the number of arms. We further show that any fair algorithm must have such a dependence, providing a strong separation between fair and unfair learning that extends to the general contextual case. In the general contextual case, we prove a tight connection between fairness and the KWIK (Knows What It Knows) learning model: a KWIK algorithm for a class of functions can be transformed into a provably fair contextual bandit algorithm and vice versa. This tight connection allows us to provide a provably fair algorithm for the linear contextual bandit problem with a polynomial dependence on the dimension, and to show (for a different class of functions) a worst-case exponential gap in regret between fair and non-fair learning algorithms.


Local Differential Privacy for Evolving Data

Neural Information Processing Systems

There are now several large scale deployments of differential privacy used to collect statistical information about users. However, these deployments periodically recollect the data and recompute the statistics using algorithms designed for a single use. As a result, these systems do not provide meaningful privacy guarantees over long time scales. Moreover, existing techniques to mitigate this effect do not apply in the "local model" of differential privacy that these systems use. In this paper, we introduce a new technique for local differential privacy that makes it possible to maintain up-to-date statistics over time, with privacy guarantees that degrade only in the number of changes in the underlying distribution rather than the number of collection periods. We use our technique for tracking a changing statistic in the setting where users are partitioned into an unknown collection of groups, and at every time period each user draws a single bit from a common (but changing) group-specific distribution. We also provide an application to frequency and heavy-hitter estimation.


Local Differential Privacy for Evolving Data

Neural Information Processing Systems

There are now several large scale deployments of differential privacy used to collect statistical information about users. However, these deployments periodically recollect the data and recompute the statistics using algorithms designed for a single use. As a result, these systems do not provide meaningful privacy guarantees over long time scales. Moreover, existing techniques to mitigate this effect do not apply in the "local model" of differential privacy that these systems use. In this paper, we introduce a new technique for local differential privacy that makes it possible to maintain up-to-date statistics over time, with privacy guarantees that degrade only in the number of changes in the underlying distribution rather than the number of collection periods. We use our technique for tracking a changing statistic in the setting where users are partitioned into an unknown collection of groups, and at every time period each user draws a single bit from a common (but changing) group-specific distribution. We also provide an application to frequency and heavy-hitter estimation.