Matteucci, Matteo
BTGenBot: Behavior Tree Generation for Robotic Tasks with Lightweight LLMs
Izzo, Riccardo Andrea, Bardaro, Gianluca, Matteucci, Matteo
This paper presents a novel approach to generating behavior trees for robots using lightweight large language models (LLMs) with a maximum of 7 billion parameters. The study demonstrates that it is possible to achieve satisfying results with compact LLMs when fine-tuned on a specific dataset. The key contributions of this research include the creation of a fine-tuning dataset based on existing behavior trees using GPT-3.5 and a comprehensive comparison of multiple LLMs (namely llama2, llama-chat, and code-llama) across nine distinct tasks. To be thorough, we evaluated the generated behavior trees using static syntactical analysis, a validation system, a simulated environment, and a real robot. Furthermore, this work opens the possibility of deploying such solutions directly on the robot, enhancing its practical applicability. Findings from this study demonstrate the potential of LLMs with a limited number of parameters in generating effective and efficient robot behaviors.
A Deep-Learning Technique to Locate Cryptographic Operations in Side-Channel Traces
Chiari, Giuseppe, Galli, Davide, Lattari, Francesco, Matteucci, Matteo, Zoni, Davide
Side-channel attacks allow extracting secret information from the execution of cryptographic primitives by correlating the partially known computed data and the measured side-channel signal. However, to set up a successful side-channel attack, the attacker has to perform i) the challenging task of locating the time instant in which the target cryptographic primitive is executed inside a side-channel trace and then ii)the time-alignment of the measured data on that time instant. This paper presents a novel deep-learning technique to locate the time instant in which the target computed cryptographic operations are executed in the side-channel trace. In contrast to state-of-the-art solutions, the proposed methodology works even in the presence of trace deformations obtained through random delay insertion techniques. We validated our proposal through a successful attack against a variety of unprotected and protected cryptographic primitives that have been executed on an FPGA-implemented system-on-chip featuring a RISC-V CPU.
Harnessing the Computing Continuum across Personalized Healthcare, Maintenance and Inspection, and Farming 4.0
Baghdadi, Fatemeh, Cirillo, Davide, Lezzi, Daniele, Lordan, Francesc, Vazquez, Fernando, Lomurno, Eugenio, Archetti, Alberto, Ardagna, Danilo, Matteucci, Matteo
The AI-SPRINT project, launched in 2021 and funded by the European Commission, focuses on the development and implementation of AI applications across the computing continuum. This continuum ensures the coherent integration of computational resources and services from centralized data centers to edge devices, facilitating efficient and adaptive computation and application delivery. AI-SPRINT has achieved significant scientific advances, including streamlined processes, improved efficiency, and the ability to operate in real time, as evidenced by three practical use cases. This paper provides an in-depth examination of these applications -- Personalized Healthcare, Maintenance and Inspection, and Farming 4.0 -- highlighting their practical implementation and the objectives achieved with the integration of AI-SPRINT technologies. We analyze how the proposed toolchain effectively addresses a range of challenges and refines processes, discussing its relevance and impact in multiple domains. After a comprehensive overview of the main AI-SPRINT tools used in these scenarios, the paper summarizes of the findings and key lessons learned.
More than the Sum of Its Parts: Ensembling Backbone Networks for Few-Shot Segmentation
Catalano, Nico, Maranelli, Alessandro, Chiatti, Agnese, Matteucci, Matteo
Semantic segmentation is a key prerequisite to robust image understanding for applications in \acrlong{ai} and Robotics. \acrlong{fss}, in particular, concerns the extension and optimization of traditional segmentation methods in challenging conditions where limited training examples are available. A predominant approach in \acrlong{fss} is to rely on a single backbone for visual feature extraction. Choosing which backbone to leverage is a deciding factor contributing to the overall performance. In this work, we interrogate on whether fusing features from different backbones can improve the ability of \acrlong{fss} models to capture richer visual features. To tackle this question, we propose and compare two ensembling techniques-Independent Voting and Feature Fusion. Among the available \acrlong{fss} methods, we implement the proposed ensembling techniques on PANet. The module dedicated to predicting segmentation masks from the backbone embeddings in PANet avoids trainable parameters, creating a controlled `in vitro' setting for isolating the impact of different ensembling strategies. Leveraging the complementary strengths of different backbones, our approach outperforms the original single-backbone PANet across standard benchmarks even in challenging one-shot learning scenarios. Specifically, it achieved a performance improvement of +7.37\% on PASCAL-5\textsuperscript{i} and of +10.68\% on COCO-20\textsuperscript{i} in the top-performing scenario where three backbones are combined. These results, together with the qualitative inspection of the predicted subject masks, suggest that relying on multiple backbones in PANet leads to a more comprehensive feature representation, thus expediting the successful application of \acrlong{fss} methods in challenging, data-scarce environments.
Can Shape-Infused Joint Embeddings Improve Image-Conditioned 3D Diffusion?
Sbrolli, Cristian, Cudrano, Paolo, Matteucci, Matteo
Recent advancements in deep generative models, particularly with the application of CLIP (Contrastive Language Image Pretraining) to Denoising Diffusion Probabilistic Models (DDPMs), have demonstrated remarkable effectiveness in text to image generation. The well structured embedding space of CLIP has also been extended to image to shape generation with DDPMs, yielding notable results. Despite these successes, some fundamental questions arise: Does CLIP ensure the best results in shape generation from images? Can we leverage conditioning to bring explicit 3D knowledge into the generative process and obtain better quality? This study introduces CISP (Contrastive Image Shape Pre training), designed to enhance 3D shape synthesis guided by 2D images. CISP aims to enrich the CLIP framework by aligning 2D images with 3D shapes in a shared embedding space, specifically capturing 3D characteristics potentially overlooked by CLIP's text image focus. Our comprehensive analysis assesses CISP's guidance performance against CLIP guided models, focusing on generation quality, diversity, and coherence of the produced shapes with the conditioning image. We find that, while matching CLIP in generation quality and diversity, CISP substantially improves coherence with input images, underscoring the value of incorporating 3D knowledge into generative models. These findings suggest a promising direction for advancing the synthesis of 3D visual content by integrating multimodal systems with 3D representations.
Deep Learning-based Target-To-User Association in Integrated Sensing and Communication Systems
Cazzella, Lorenzo, Mizmizi, Marouan, Tagliaferri, Dario, Badini, Damiano, Matteucci, Matteo, Spagnolini, Umberto
In Integrated Sensing and Communication (ISAC) systems, matching the radar targets with communication user equipments (UEs) is functional to several communication tasks, such as proactive handover and beam prediction. In this paper, we consider a radar-assisted communication system where a base station (BS) is equipped with a multiple-input-multiple-output (MIMO) radar that has a double aim: (i) associate vehicular radar targets to vehicular equipments (VEs) in the communication beamspace and (ii) predict the beamforming vector for each VE from radar data. The proposed target-to-user (T2U) association consists of two stages. First, vehicular radar targets are detected from range-angle images, and, for each, a beamforming vector is estimated. Then, the inferred per-target beamforming vectors are matched with the ones utilized at the BS for communication to perform target-to-user (T2U) association. Joint multi-target detection and beam inference is obtained by modifying the you only look once (YOLO) model, which is trained over simulated range-angle radar images. Simulation results over different urban vehicular mobility scenarios show that the proposed T2U method provides a probability of correct association that increases with the size of the BS antenna array, highlighting the respective increase of the separability of the VEs in the beamspace. Moreover, we show that the modified YOLO architecture can effectively perform both beam prediction and radar target detection, with similar performance in mean average precision on the latter over different antenna array sizes.
Age Group Discrimination via Free Handwriting Indicators
Lomurno, Eugenio, Toffoli, Simone, Di Febbo, Davide, Matteucci, Matteo, Lunardini, Francesca, Ferrante, Simona
The growing global elderly population is expected to increase the prevalence of frailty, posing significant challenges to healthcare systems. Frailty, a syndrome associated with ageing, is characterised by progressive health decline, increased vulnerability to stressors and increased risk of mortality. It represents a significant burden on public health and reduces the quality of life of those affected. The lack of a universally accepted method to assess frailty and a standardised definition highlights a critical research gap. Given this lack and the importance of early prevention, this study presents an innovative approach using an instrumented ink pen to ecologically assess handwriting for age group classification. Content-free handwriting data from 80 healthy participants in different age groups (20-40, 41-60, 61-70 and 70+) were analysed. Fourteen gesture- and tremor-related indicators were computed from the raw data and used in five classification tasks. These tasks included discriminating between adjacent and non-adjacent age groups using Catboost and Logistic Regression classifiers. Results indicate exceptional classifier performance, with accuracy ranging from 82.5% to 97.5%, precision from 81.8% to 100%, recall from 75% to 100% and ROC-AUC from 92.2% to 100%. Model interpretability, facilitated by SHAP analysis, revealed age-dependent sensitivity of temporal and tremor-related handwriting features. Importantly, this classification method offers potential for early detection of abnormal signs of ageing in uncontrolled settings such as remote home monitoring, thereby addressing the critical issue of frailty detection and contributing to improved care for older adults.
RadarLCD: Learnable Radar-based Loop Closure Detection Pipeline
Usuelli, Mirko, Frosi, Matteo, Cudrano, Paolo, Mentasti, Simone, Matteucci, Matteo
Loop Closure Detection (LCD) is an essential task in robotics and computer vision, serving as a fundamental component for various applications across diverse domains. These applications encompass object recognition, image retrieval, and video analysis. LCD consists in identifying whether a robot has returned to a previously visited location, referred to as a loop, and then estimating the related roto-translation with respect to the analyzed location. Despite the numerous advantages of radar sensors, such as their ability to operate under diverse weather conditions and provide a wider range of view compared to other commonly used sensors (e.g., cameras or LiDARs), integrating radar data remains an arduous task due to intrinsic noise and distortion. To address this challenge, this research introduces RadarLCD, a novel supervised deep learning pipeline specifically designed for Loop Closure Detection using the FMCW Radar (Frequency Modulated Continuous Wave) sensor. RadarLCD, a learning-based LCD methodology explicitly designed for radar systems, makes a significant contribution by leveraging the pre-trained HERO (Hybrid Estimation Radar Odometry) model. Being originally developed for radar odometry, HERO's features are used to select key points crucial for LCD tasks. The methodology undergoes evaluation across a variety of FMCW Radar dataset scenes, and it is compared to state-of-the-art systems such as Scan Context for Place Recognition and ICP for Loop Closure. The results demonstrate that RadarLCD surpasses the alternatives in multiple aspects of Loop Closure Detection.
Federated Survival Forests
Archetti, Alberto, Matteucci, Matteo
Survival analysis is a subfield of statistics concerned with modeling the occurrence time of a particular event of interest for a population. Survival analysis found widespread applications in healthcare, engineering, and social sciences. However, real-world applications involve survival datasets that are distributed, incomplete, censored, and confidential. In this context, federated learning can tremendously improve the performance of survival analysis applications. Federated learning provides a set of privacy-preserving techniques to jointly train machine learning models on multiple datasets without compromising user privacy, leading to a better generalization performance. However, despite the widespread development of federated learning in recent AI research, few studies focus on federated survival analysis. In this work, we present a novel federated algorithm for survival analysis based on one of the most successful survival models, the random survival forest. We call the proposed method Federated Survival Forest (FedSurF). With a single communication round, FedSurF obtains a discriminative power comparable to deep-learning-based federated models trained over hundreds of federated iterations. Moreover, FedSurF retains all the advantages of random forests, namely low computational cost and natural handling of missing values and incomplete datasets. These advantages are especially desirable in real-world federated environments with multiple small datasets stored on devices with low computational capabilities. Numerical experiments compare FedSurF with state-of-the-art survival models in federated networks, showing how FedSurF outperforms deep-learning-based federated algorithms in realistic environments with non-identically distributed data.
Scaling Survival Analysis in Healthcare with Federated Survival Forests: A Comparative Study on Heart Failure and Breast Cancer Genomics
Archetti, Alberto, Ieva, Francesca, Matteucci, Matteo
Survival analysis is a fundamental tool in medicine, modeling the time until an event of interest occurs in a population. However, in real-world applications, survival data are often incomplete, censored, distributed, and confidential, especially in healthcare settings where privacy is critical. The scarcity of data can severely limit the scalability of survival models to distributed applications that rely on large data pools. Federated learning is a promising technique that enables machine learning models to be trained on multiple datasets without compromising user privacy, making it particularly well-suited for addressing the challenges of survival data and large-scale survival applications. Despite significant developments in federated learning for classification and regression, many directions remain unexplored in the context of survival analysis. In this work, we propose an extension of the Federated Survival Forest algorithm, called FedSurF++. This federated ensemble method constructs random survival forests in heterogeneous federations. Specifically, we investigate several new tree sampling methods from client forests and compare the results with state-of-the-art survival models based on neural networks. The key advantage of FedSurF++ is its ability to achieve comparable performance to existing methods while requiring only a single communication round to complete. The extensive empirical investigation results in a significant improvement from the algorithmic and privacy preservation perspectives, making the original FedSurF algorithm more efficient, robust, and private. We also present results on two real-world datasets demonstrating the success of FedSurF++ in real-world healthcare studies. Our results underscore the potential of FedSurF++ to improve the scalability and effectiveness of survival analysis in distributed settings while preserving user privacy.