Goto

Collaborating Authors

 Mattar, Marwan


On the Use and Misuse of Absorbing States in Multi-agent Reinforcement Learning

arXiv.org Artificial Intelligence

The creation and destruction of agents in cooperative multi-agent reinforcement learning (MARL) is a critically under-explored area of research. Current MARL algorithms often assume that the number of agents within a group remains fixed throughout an experiment. However, in many practical problems, an agent may terminate before their teammates. This early termination issue presents a challenge: the terminated agent must learn from the group's success or failure which occurs beyond its own existence. We refer to propagating value from rewards earned by remaining teammates to terminated agents as the Posthumous Credit Assignment problem. Current MARL methods handle this problem by placing these agents in an absorbing state until the entire group of agents reaches a termination condition. Although absorbing states enable existing algorithms and APIs to handle terminated agents without modification, practical training efficiency and resource use problems exist. In this work, we first demonstrate that sample complexity increases with the quantity of absorbing states in a toy supervised learning task for a fully connected network, while attention is more robust to variable size input. Then, we present a novel architecture for an existing state-of-the-art MARL algorithm which uses attention instead of a fully connected layer with absorbing states. Finally, we demonstrate that this novel architecture significantly outperforms the standard architecture on tasks in which agents are created or destroyed within episodes as well as standard multi-agent coordination tasks.


AAAI-2019 Workshop on Games and Simulations for Artificial Intelligence

arXiv.org Artificial Intelligence

This volume represents the accepted submissions from the AAAI-2019 Workshop on Games and Simulations for Artificial Intelligence held on January 29, 2019 in Honolulu, Hawaii, USA. https://www.gamesim.ai


Nonparametric Curve Alignment

arXiv.org Machine Learning

Congealing is a flexible nonparametric data-driven framework for the joint alignment of data. It has been successfully applied to the joint alignment of binary images of digits, binary images of object silhouettes, grayscale MRI images, color images of cars and faces, and 3D brain volumes. This research enhances congealing to practically and effectively apply it to curve data. We develop a parameterized set of nonlinear transformations that allow us to apply congealing to this type of data. We present positive results on aligning synthetic and real curve data sets and conclude with a discussion on extending this work to simultaneous alignment and clustering.


Unity: A General Platform for Intelligent Agents

arXiv.org Machine Learning

Recent advances in Deep Reinforcement Learning and Robotics have been driven by the presence of increasingly realistic and complex simulation environments. Many of the existing platforms, however, provide either unrealistic visuals, inaccurate physics, low task complexity, or a limited capacity for interaction among artificial agents. Furthermore, many platforms lack the ability to flexibly configure the simulation, hence turning the simulation environment into a black-box from the perspective of the learning system. Here we describe a new open source toolkit for creating and interacting with simulation environments using the Unity platform: Unity ML-Agents Toolkit. By taking advantage of Unity as a simulation platform, the toolkit enables the development of learning environments which are rich in sensory and physical complexity, provide compelling cognitive challenges, and support dynamic multi-agent interaction. We detail the platform design, communication protocol, set of example environments, and variety of training scenarios made possible via the toolkit.


Horizontal Scaling With a Framework for Providing AI Solutions Within a Game Company

AAAI Conferences

Games have been a major focus of AI since the field formed seventy years ago. Recently, video games have replaced chess and go as the current "Mt. Everest Problem." This paper looks beyond the video games themselves to the application of AI techniques within the ecosystems that produce them. Electronic Arts (EA) must deal with AI at scale across many game studios as it develops many AAA games each year, and not a single, AI-based, flagship application. EA has adopted a horizontal scaling strategy in response to this challenge and built a platform for delivering AI artifacts anywhere within EA's software universe. By combining a data warehouse for player history, an Agent Store for capturing processes acquired through machine learning, and a recommendation engine as an action layer, EA has been delivering a wide range of AI solutions throughout the company during the last two years. These solutions, such as dynamic difficulty adjustment, in-game content and activity recommendations, matchmaking, and game balancing, have had major impact on engagement, revenue, and development resources within EA.


Learning to Align from Scratch

Neural Information Processing Systems

Unsupervised joint alignment of images has been demonstrated to improve performance on recognition tasks such as face verification. Such alignment reduces undesired variability due to factors such as pose, while only requiring weak supervision in the form of poorly aligned examples. However, prior work on unsupervised alignment of complex, real world images has required the careful selection of feature representation based on hand-crafted image descriptors, in order to achieve an appropriate, smooth optimization landscape. In this paper, we instead propose a novel combination of unsupervised joint alignment with unsupervised feature learning. Specifically, we incorporate deep learning into the {\em congealing} alignment framework. Through deep learning, we obtain features that can represent the image at differing resolutions based on network depth, and that are tuned to the statistics of the specific data being aligned. In addition, we modify the learning algorithm for the restricted Boltzmann machine by incorporating a group sparsity penalty, leading to a topographic organization on the learned filters and improving subsequent alignment results. We apply our method to the Labeled Faces in the Wild database (LFW). Using the aligned images produced by our proposed unsupervised algorithm, we achieve a significantly higher accuracy in face verification than obtained using the original face images, prior work in unsupervised alignment, and prior work in supervised alignment. We also match the accuracy for the best available, but unpublished method.