Matsuda, Noboru
Assertion Enhanced Few-Shot Learning: Instructive Technique for Large Language Models to Generate Educational Explanations
Shahriar, Tasmia, Ramos, Kelly, Matsuda, Noboru
Human educators possess an intrinsic ability to anticipate and seek educational explanations from students, which drives them to pose thought-provoking questions when students cannot articulate these explanations independently. We aim to imbue Intelligent Tutoring Systems with this ability using few-shot learning capability of Large Language Models. Our work proposes a novel prompting technique, Assertion Enhanced Few-Shot Learning, to facilitate the generation of accurate, detailed oriented educational explanations. Our central hypothesis is that, in educational domain, few-shot demonstrations are necessary but not a sufficient condition for quality explanation generation. We conducted a study involving 12 in-service teachers, comparing our approach to Traditional Few-Shot Learning. The results show that Assertion Enhanced Few-Shot Learning improves explanation accuracy by 15% and yields higher-quality explanations, as evaluated by teachers. We also conduct a qualitative ablation study to factor the impact of assertions to provide educator-friendly prompting guidelines for generating explanations in their domain of interest.
Students' Perceptions and Preferences of Generative Artificial Intelligence Feedback for Programming
Zhang, Zhengdong, Dong, Zihan, Shi, Yang, Matsuda, Noboru, Price, Thomas, Xu, Dongkuan
The rapid evolution of artificial intelligence (AI), specifically large language models (LLMs), has opened opportunities for various educational applications. This paper explored the feasibility of utilizing ChatGPT, one of the most popular LLMs, for automating feedback for Java programming assignments in an introductory computer science (CS1) class. Specifically, this study focused on three questions: 1) To what extent do students view LLM-generated feedback as formative? 2) How do students see the comparative affordances of feedback prompts that include their code, vs. those that exclude it? 3) What enhancements do students suggest for improving AI-generated feedback? To address these questions, we generated automated feedback using the ChatGPT API for four lab assignments in the CS1 class. The survey results revealed that students perceived the feedback as aligning well with formative feedback guidelines established by Shute. Additionally, students showed a clear preference for feedback generated by including the students' code as part of the LLM prompt, and our thematic study indicated that the preference was mainly attributed to the specificity, clarity, and corrective nature of the feedback. Moreover, this study found that students generally expected specific and corrective feedback with sufficient code examples, but had diverged opinions on the tone of the feedback. This study demonstrated that ChatGPT could generate Java programming assignment feedback that students perceived as formative. It also offered insights into the specific improvements that would make the ChatGPT-generated feedback useful for students.
Towards a Computational Model of Why Some Students Learn Faster than Others
Li, Nan (Carnegie Mellon University) | Matsuda, Noboru (Carnegie Mellon University) | Cohen, William (Carnegie Mellon University) | Koedinger, Kenneth
Learners that have better metacognition acquire knowledge faster than others who do not. If we had better models of such learning, we would be able to build a better metacognitive educational system. In this paper, we propose a computational model that uses a probabilistic context free grammar induction algorithm yielding metacognitive learning by acquiring deep features to assist future learning. We discuss the challenges of integrating this model into a synthetic student, and possible future studies in using this model to better understand human learning. Preliminary results suggest that both stronger prior knowledge and a better learning strategy can speed up the learning process. Some model variations generate human-like error pattern.