Matsubara, Yoshitomo
A Multi-task Supervised Compression Model for Split Computing
Matsubara, Yoshitomo, Mendula, Matteo, Levorato, Marco
Split computing ($\neq$ split learning) is a promising approach to deep learning models for resource-constrained edge computing systems, where weak sensor (mobile) devices are wirelessly connected to stronger edge servers through channels with limited communication capacity. State-of-theart work on split computing presents methods for single tasks such as image classification, object detection, or semantic segmentation. The application of existing methods to multitask problems degrades model accuracy and/or significantly increase runtime latency. In this study, we propose Ladon, the first multi-task-head supervised compression model for multi-task split computing. Experimental results show that the multi-task supervised compression model either outperformed or rivaled strong lightweight baseline models in terms of predictive performance for ILSVRC 2012, COCO 2017, and PASCAL VOC 2012 datasets while learning compressed representations at its early layers. Furthermore, our models reduced end-to-end latency (by up to 95.4%) and energy consumption of mobile devices (by up to 88.2%) in multi-task split computing scenarios.
A Transformer Model for Symbolic Regression towards Scientific Discovery
Lalande, Florian, Matsubara, Yoshitomo, Chiba, Naoya, Taniai, Tatsunori, Igarashi, Ryo, Ushiku, Yoshitaka
Symbolic Regression (SR) searches for mathematical expressions which best describe numerical datasets. This allows to circumvent interpretation issues inherent to artificial neural networks, but SR algorithms are often computationally expensive. This work proposes a new Transformer model aiming at Symbolic Regression particularly focused on its application for Scientific Discovery. We propose three encoder architectures with increasing flexibility but at the cost of column-permutation equivariance violation. Training results indicate that the most flexible architecture is required to prevent from overfitting. Once trained, we apply our best model to the SRSD datasets (Symbolic Regression for Scientific Discovery datasets) which yields state-of-the-art results using the normalized tree-based edit distance, at no extra computational cost.
Rethinking Symbolic Regression Datasets and Benchmarks for Scientific Discovery
Matsubara, Yoshitomo, Chiba, Naoya, Igarashi, Ryo, Ushiku, Yoshitaka
This paper revisits datasets and evaluation criteria for Symbolic Regression (SR), specifically focused on its potential for scientific discovery. Focused on a set of formulas used in the existing datasets based on Feynman Lectures on Physics, we recreate 120 datasets to discuss the performance of symbolic regression for scientific discovery (SRSD). For each of the 120 SRSD datasets, we carefully review the properties of the formula and its variables to design reasonably realistic sampling ranges of values so that our new SRSD datasets can be used for evaluating the potential of SRSD such as whether or not an SR method can (re)discover physical laws from such datasets. We also create another 120 datasets that contain dummy variables to examine whether SR methods can choose necessary variables only. Besides, we propose to use normalized edit distances (NED) between a predicted equation and the true equation trees for addressing a critical issue that existing SR metrics are either binary or errors between the target values and an SR model's predicted values for a given input. We conduct benchmark experiments on our new SRSD datasets using various representative SR methods. The experimental results show that we provide a more realistic performance evaluation, and our user study shows that the NED correlates with human judges significantly more than an existing SR metric.
torchdistill Meets Hugging Face Libraries for Reproducible, Coding-Free Deep Learning Studies: A Case Study on NLP
Matsubara, Yoshitomo
Reproducibility in scientific work has been becoming increasingly important in research communities such as machine learning, natural language processing, and computer vision communities due to the rapid development of the research domains supported by recent advances in deep learning. In this work, we present a significantly upgraded version of torchdistill, a modular-driven coding-free deep learning framework significantly upgraded from the initial release, which supports only image classification and object detection tasks for reproducible knowledge distillation experiments. To demonstrate that the upgraded framework can support more tasks with third-party libraries, we reproduce the GLUE benchmark results of BERT models using a script based on the upgraded torchdistill, harmonizing with various Hugging Face libraries. All the 27 fine-tuned BERT models and configurations to reproduce the results are published at Hugging Face, and the model weights have already been widely used in research communities. We also reimplement popular small-sized models and new knowledge distillation methods and perform additional experiments for computer vision tasks.
SplitBeam: Effective and Efficient Beamforming in Wi-Fi Networks Through Split Computing
Bahadori, Niloofar, Matsubara, Yoshitomo, Levorato, Marco, Restuccia, Francesco
Modern IEEE 802.11 (Wi-Fi) networks extensively rely on multiple-input multiple-output (MIMO) to significantly improve throughput. To correctly beamform MIMO transmissions, the access point needs to frequently acquire a beamforming matrix (BM) from each connected station. However, the size of the matrix grows with the number of antennas and subcarriers, resulting in an increasing amount of airtime overhead and computational load at the station. Conventional approaches come with either excessive computational load or loss of beamforming precision. For this reason, we propose SplitBeam, a new framework where we train a split deep neural network (DNN) to directly output the BM given the channel state information (CSI) matrix as input. We formulate and solve a bottleneck optimization problem (BOP) to keep computation, airtime overhead, and bit error rate (BER) below application requirements. We perform extensive experimental CSI collection with off-the-shelf Wi-Fi devices in two distinct environments and compare the performance of SplitBeam with the standard IEEE 802.11 algorithm for BM feedback and the state-of-the-art DNN-based approach LB-SciFi. Our experimental results show that SplitBeam reduces the beamforming feedback size and computational complexity by respectively up to 81% and 84% while maintaining BER within about 10^-3 of existing approaches. We also implement the SplitBeam DNNs on FPGA hardware to estimate the end-to-end BM reporting delay, and show that the latter is less than 10 milliseconds in the most complex scenario, which is the target channel sounding frequency in realistic multi-user MIMO scenarios.
SC2 Benchmark: Supervised Compression for Split Computing
Matsubara, Yoshitomo, Yang, Ruihan, Levorato, Marco, Mandt, Stephan
With the increasing demand for deep learning models on mobile devices, splitting neural network computation between the device and a more powerful edge server has become an attractive solution. However, existing split computing approaches often underperform compared to a naive baseline of remote computation on compressed data. Recent studies propose learning compressed representations that contain more relevant information for supervised downstream tasks, showing improved tradeoffs between compressed data size and supervised performance. However, existing evaluation metrics only provide an incomplete picture of split computing. This study introduces supervised compression for split computing (SC2) and proposes new evaluation criteria: minimizing computation on the mobile device, minimizing transmitted data size, and maximizing model accuracy. We conduct a comprehensive benchmark study using 10 baseline methods, three computer vision tasks, and over 180 trained models, and discuss various aspects of SC2. We also release sc2bench, a Python package for future research on SC2. Our proposed metrics and package will help researchers better understand the tradeoffs of supervised compression in split computing.
Cross-Lingual Knowledge Distillation for Answer Sentence Selection in Low-Resource Languages
Gupta, Shivanshu, Matsubara, Yoshitomo, Chadha, Ankit, Moschitti, Alessandro
While impressive performance has been achieved on the task of Answer Sentence Selection (AS2) for English, the same does not hold for languages that lack large labeled datasets. In this work, we propose Cross-Lingual Knowledge Distillation (CLKD) from a strong English AS2 teacher as a method to train AS2 models for low-resource languages in the tasks without the need of labeled data for the target language. To evaluate our method, we introduce 1) Xtr-WikiQA, a translation-based WikiQA dataset for 9 additional languages, and 2) TyDi-AS2, a multilingual AS2 dataset with over 70K questions spanning 8 typologically diverse languages. We conduct extensive experiments on Xtr-WikiQA and TyDi-AS2 with multiple teachers, diverse monolingual and multilingual pretrained language models (PLMs) as students, and both monolingual and multilingual training. The results demonstrate that CLKD either outperforms or rivals even supervised fine-tuning with the same amount of labeled data and a combination of machine translation and the teacher model. Our method can potentially enable stronger AS2 models for low-resource languages, while TyDi-AS2 can serve as the largest multilingual AS2 dataset for further studies in the research community.
Ensemble Transformer for Efficient and Accurate Ranking Tasks: an Application to Question Answering Systems
Matsubara, Yoshitomo, Soldaini, Luca, Lind, Eric, Moschitti, Alessandro
Large transformer models can highly improve Answer Sentence Selection (AS2) tasks, but their high computational costs prevent their use in many real-world applications. In this paper, we explore the following research question: How can we make the AS2 models more accurate without significantly increasing their model complexity? To address the question, we propose a Multiple Heads Student architecture (named CERBERUS), an efficient neural network designed to distill an ensemble of large transformers into a single smaller model. CERBERUS consists of two components: a stack of transformer layers that is used to encode inputs, and a set of ranking heads; unlike traditional distillation technique, each of them is trained by distilling a different large transformer architecture in a way that preserves the diversity of the ensemble members. The resulting model captures the knowledge of heterogeneous transformer models by using just a few extra parameters. We show the effectiveness of CERBERUS on three English datasets for AS2; our proposed approach outperforms all single-model distillations we consider, rivaling the state-of-the-art large AS2 models that have 2.7x more parameters and run 2.5x slower. Code for our model is available at https://github.com/amazon-research/wqa-cerberus
Split Computing and Early Exiting for Deep Learning Applications: Survey and Research Challenges
Matsubara, Yoshitomo, Levorato, Marco, Restuccia, Francesco
Mobile devices such as smartphones and autonomous vehicles increasingly rely on deep neural networks (DNNs) to execute complex inference tasks such as image classification and speech recognition, among others. However, continuously executing the entire DNN on mobile devices can quickly deplete their battery. Although task offloading to cloud/edge servers may decrease the mobile device's computational burden, erratic patterns in channel quality, network, and edge server load can lead to a significant delay in task execution. Recently, approaches based on split computing (SC) have been proposed, where the DNN is split into a head and a tail model, executed respectively on the mobile device and on the edge server. Ultimately, this may reduce bandwidth usage as well as energy consumption. Another approach, called early exiting (EE), trains models to embed multiple "exits" earlier in the architecture, each providing increasingly higher target accuracy. Therefore, the trade-off between accuracy and delay can be tuned according to the current conditions or application demands. In this paper, we provide a comprehensive survey of the state of the art in SC and EE strategies by presenting a comparison of the most relevant approaches. We conclude the paper by providing a set of compelling research challenges.
torchdistill: A Modular, Configuration-Driven Framework for Knowledge Distillation
Matsubara, Yoshitomo
While knowledge distillation (transfer) has been attracting attentions from the research community, the recent development in the fields has heightened the need for reproducible studies and highly generalized frameworks to lower barriers to such high-quality, reproducible deep learning research. Several researchers voluntarily published frameworks used in their knowledge distillation studies to help other interested researchers reproduce their original work. Such frameworks, however, are usually neither well generalized nor maintained, thus researchers are still required to write a lot of code to refactor/build on the frameworks for introducing new methods, models, datasets and designing experiments. In this paper, we present our developed open-source framework built on PyTorch and dedicated for knowledge distillation studies. The framework is designed to enable users to design experiments by a declarative PyYAML configuration file, and helps researchers complete the recently proposed ML Code Completeness Checklist. Using the developed framework, we demonstrate its various efficient training strategies, and implement a variety of knowledge distillation methods. We also reproduce some of their original experimental results on the ImageNet and COCO datasets presented at major machine learning conferences such as ICLR, NeurIPS, CVPR and ECCV, including recent state-of-the-art methods.