Mathur, Maya B.
What can large language models do for sustainable food?
Thomas, Anna T., Yee, Adam, Mayne, Andrew, Mathur, Maya B., Jurafsky, Dan, Gligorić, Kristina
Food systems are responsible for a third of human-caused greenhouse gas emissions. We investigate what Large Language Models (LLMs) can contribute to reducing the environmental impacts of food production. We define a typology of design and prediction tasks based on the sustainable food literature and collaboration with domain experts, and evaluate six LLMs on four tasks in our typology. For example, for a sustainable protein design task, food science experts estimated that collaboration with an LLM can reduce time spent by 45% on average, compared to 22% for collaboration with another expert human food scientist. However, for a sustainable menu design task, LLMs produce suboptimal solutions when instructed to consider both human satisfaction and climate impacts. We propose a general framework for integrating LLMs with combinatorial optimization to improve reasoning capabilities. Our approach decreases emissions of food choices by 79% in a hypothetical restaurant while maintaining participants' satisfaction with their set of choices. Our results demonstrate LLMs' potential, supported by optimization techniques, to accelerate sustainable food development and adoption.