Mathieu, Michael
Open-Ended Learning Leads to Generally Capable Agents
Open Ended Learning Team, null, Stooke, Adam, Mahajan, Anuj, Barros, Catarina, Deck, Charlie, Bauer, Jakob, Sygnowski, Jakub, Trebacz, Maja, Jaderberg, Max, Mathieu, Michael, McAleese, Nat, Bradley-Schmieg, Nathalie, Wong, Nathaniel, Porcel, Nicolas, Raileanu, Roberta, Hughes-Fitt, Steph, Dalibard, Valentin, Czarnecki, Wojciech Marian
In this work we create agents that can perform well beyond a single, individual task, that exhibit much wider generalisation of behaviour to a massive, rich space of challenges. We define a universe of tasks within an environment domain and demonstrate the ability to train agents that are generally capable across this vast space and beyond. The environment is natively multi-agent, spanning the continuum of competitive, cooperative, and independent games, which are situated within procedurally generated physical 3D worlds. The resulting space is exceptionally diverse in terms of the challenges posed to agents, and as such, even measuring the learning progress of an agent is an open research problem. We propose an iterative notion of improvement between successive generations of agents, rather than seeking to maximise a singular objective, allowing us to quantify progress despite tasks being incomparable in terms of achievable rewards. We show that through constructing an open-ended learning process, which dynamically changes the training task distributions and training objectives such that the agent never stops learning, we achieve consistent learning of new behaviours. The resulting agent is able to score reward in every one of our humanly solvable evaluation levels, with behaviour generalising to many held-out points in the universe of tasks. Examples of this zero-shot generalisation include good performance on Hide and Seek, Capture the Flag, and Tag. Through analysis and hand-authored probe tasks we characterise the behaviour of our agent, and find interesting emergent heuristic behaviours such as trial-and-error experimentation, simple tool use, option switching, and cooperation. Finally, we demonstrate that the general capabilities of this agent could unlock larger scale transfer of behaviour through cheap finetuning.
Energy-based Generative Adversarial Network
Zhao, Junbo, Mathieu, Michael, LeCun, Yann
We introduce the "Energy-based Generative Adversarial Network" model (EBGAN) which views the discriminator as an energy function that attributes low energies to the regions near the data manifold and higher energies to other regions. Similar to the probabilistic GANs, a generator is seen as being trained to produce contrastive samples with minimal energies, while the discriminator is trained to assign high energies to these generated samples. Viewing the discriminator as an energy function allows to use a wide variety of architectures and loss functionals in addition to the usual binary classifier with logistic output. Among them, we show one instantiation of EBGAN framework as using an auto-encoder architecture, with the energy being the reconstruction error, in place of the discriminator. We show that this form of EBGAN exhibits more stable behavior than regular GANs during training. We also show that a single-scale architecture can be trained to generate high-resolution images.
Disentangling factors of variation in deep representations using adversarial training
Mathieu, Michael, Zhao, Junbo, Sprechmann, Pablo, Ramesh, Aditya, LeCun, Yann
We introduce a conditional generative model for learning to disentangle the hidden factors of variation within a set of labeled observations, and separate them into complementary codes. One code summarizes the specified factors of variation associated with the labels. The other summarizes the remaining unspecified variability. During training, the only available source of supervision comes from our ability to distinguish among different observations belonging to the same class. Examples of such observations include images of a set of labeled objects captured at different viewpoints, or recordings of set of speakers dictating multiple phrases. In both instances, the intra-class diversity is the source of the unspecified factors of variation: each object is observed at multiple viewpoints, and each speaker dictates multiple phrases. Learning to disentangle the specified factors from the unspecified ones becomes easier when strong supervision is possible. Suppose that during training, we have access to pairs of images, where each pair shows two different objects captured from the same viewpoint. This source of alignment allows us to solve our task using existing methods. However, labels for the unspecified factors are usually unavailable in realistic scenarios where data acquisition is not strictly controlled. We address the problem of disentanglement in this more general setting by combining deep convolutional autoencoders with a form of adversarial training. Both factors of variation are implicitly captured in the organization of the learned embedding space, and can be used for solving single-image analogies. Experimental results on synthetic and real datasets show that the proposed method is capable of generalizing to unseen classes and intra-class variabilities.
Deep multi-scale video prediction beyond mean square error
Mathieu, Michael, Couprie, Camille, LeCun, Yann
Learning to predict future images from a video sequence involves the construction of an internal representation that models the image evolution accurately, and therefore, to some degree, its content and dynamics. This is why pixel-space video prediction may be viewed as a promising avenue for unsupervised feature learning. In addition, while optical flow has been a very studied problem in computer vision for a long time, future frame prediction is rarely approached. Still, many vision applications could benefit from the knowledge of the next frames of videos, that does not require the complexity of tracking every pixel trajectories. In this work, we train a convolutional network to generate future frames given an input sequence. To deal with the inherently blurry predictions obtained from the standard Mean Squared Error (MSE) loss function, we propose three different and complementary feature learning strategies: a multi-scale architecture, an adversarial training method, and an image gradient difference loss function. We compare our predictions to different published results based on recurrent neural networks on the UCF101 dataset
Stacked What-Where Auto-encoders
Zhao, Junbo, Mathieu, Michael, Goroshin, Ross, LeCun, Yann
We present a novel architecture, the "stacked what-where auto-encoders" (SWWAE), which integrates discriminative and generative pathways and provides a unified approach to supervised, semi-supervised and unsupervised learning without relying on sampling during training. An instantiation of SWWAE uses a convolutional net (Convnet) (LeCun et al. (1998)) to encode the input, and employs a deconvolutional net (Deconvnet) (Zeiler et al. (2010)) to produce the reconstruction. The objective function includes reconstruction terms that induce the hidden states in the Deconvnet to be similar to those of the Convnet. Each pooling layer produces two sets of variables: the "what" which are fed to the next layer, and its complementary variable "where" that are fed to the corresponding layer in the generative decoder.
Learning Convolutional Feature Hierarchies for Visual Recognition
Kavukcuoglu, Koray, Sermanet, Pierre, Boureau, Y-lan, Gregor, Karol, Mathieu, Michael, Cun, Yann L.
We propose an unsupervised method for learning multi-stage hierarchies of sparse convolutional features. While sparse coding has become an increasingly popular method for learning visual features, it is most often trained at the patch level. Applying the resulting filters convolutionally results in highly redundant codes because overlapping patches are encoded in isolation. By training convolutionally over large image windows, our method reduces the redudancy between feature vectors at neighboring locations and improves the efficiency of the overall representation. In addition to a linear decoder that reconstructs the image from sparse features, our method trains an efficient feed-forward encoder that predicts quasi-sparse features from the input. While patch-based training rarely produces anything but oriented edge detectors, we show that convolutional training produces highly diverse filters, including center-surround filters, corner detectors, cross detectors, and oriented grating detectors. We show that using these filters in multi-stage convolutional network architecture improves performance on a number of visual recognition and detection tasks.