Matei, Basarab
CADMR: Cross-Attention and Disentangled Learning for Multimodal Recommender Systems
Khalafaoui, Yasser, Lovisetto, Martino, Matei, Basarab, Grozavu, Nistor
The increasing availability and diversity of multimodal data in recommender systems offer new avenues for enhancing recommendation accuracy and user satisfaction. However, these systems must contend with high-dimensional, sparse user-item rating matrices, where reconstructing the matrix with only small subsets of preferred items for each user poses a significant challenge. To address this, we propose CADMR, a novel autoencoder-based multimodal recommender system framework. CADMR leverages multi-head cross-attention mechanisms and Disentangled Learning to effectively integrate and utilize heterogeneous multimodal data in reconstructing the rating matrix. Our approach first disentangles modality-specific features while preserving their interdependence, thereby learning a joint latent representation. The multi-head cross-attention mechanism is then applied to enhance user-item interaction representations with respect to the learned multimodal item latent representations. We evaluate CADMR on three benchmark datasets, demonstrating significant performance improvements over state-of-the-art methods.
Deep Matrix Factorization with Adaptive Weights for Multi-View Clustering
Khalafaoui, Yasser, Matei, Basarab, Lovisetto, Martino, Grozavu, Nistor
Recently, deep matrix factorization has been established as a powerful model for unsupervised tasks, achieving promising results, especially for multi-view clustering. However, existing methods often lack effective feature selection mechanisms and rely on empirical hyperparameter selection. To address these issues, we introduce a novel Deep Matrix Factorization with Adaptive Weights for Multi-View Clustering (DMFAW). Our method simultaneously incorporates feature selection and generates local partitions, enhancing clustering results. Notably, the features weights are controlled and adjusted by a parameter that is dynamically updated using Control Theory inspired mechanism, which not only improves the model's stability and adaptability to diverse datasets but also accelerates convergence. A late fusion approach is then proposed to align the weighted local partitions with the consensus partition. Finally, the optimization problem is solved via an alternating optimization algorithm with theoretically guaranteed convergence. Extensive experiments on benchmark datasets highlight that DMFAW outperforms state-of-the-art methods in terms of clustering performance.
Joint Multi-View Collaborative Clustering
Khalafaoui, Yasser, Matei, Basarab, Grozavu, Nistor, Lovisetto, Martino
Data is increasingly being collected from multiple sources and described by multiple views. These multi-view data provide richer information than traditional single-view data. Fusing the former for specific tasks is an essential component of multi-view clustering. Since the goal of multi-view clustering algorithms is to discover the common latent structure shared by multiple views, the majority of proposed solutions overlook the advantages of incorporating knowledge derived from horizontal collaboration between multi-view data and the final consensus. To fill this gap, we propose the Joint Multi-View Collaborative Clustering (JMVCC) solution, which involves the generation of basic partitions using Non-negative Matrix Factorization (NMF) and the horizontal collaboration principle, followed by the fusion of these local partitions using ensemble clustering. Furthermore, we propose a weighting method to reduce the risk of negative collaboration (i.e., views with low quality) during the generation and fusion of local partitions. The experimental results, which were obtained using a variety of data sets, demonstrate that JMVCC outperforms other multi-view clustering algorithms and is robust to noisy views.
Multi-modal Multi-view Clustering based on Non-negative Matrix Factorization
Khalafaoui, Yasser, Grozavu, Nistor, Matei, Basarab, Goix, Laurent-Walter
By combining related objects, unsupervised machine learning techniques aim to reveal the underlying patterns in a data set. Non-negative Matrix Factorization (NMF) is a data mining technique that splits data matrices by imposing restrictions on the elements' non-negativity into two matrices: one representing the data partitions and the other to represent the cluster prototypes of the data set. This method has attracted a lot of attention and is used in a wide range of applications, including text mining, clustering, language modeling, music transcription, and neuroscience (gene separation). The interpretation of the generated matrices is made simpler by the absence of negative values. In this article, we propose a study on multi-modal clustering algorithms and present a novel method called multi-modal multi-view non-negative matrix factorization, in which we analyze the collaboration of several local NMF models. The experimental results show the value of the proposed approach, which was evaluated using a variety of data sets, and the obtained results are very promising compared to state of art methods.
Co-clustering through Optimal Transport
Laclau, Charlotte, Redko, Ievgen, Matei, Basarab, Bennani, Younès, Brault, Vincent
In this paper, we present a novel method for co-clustering, an unsupervised learning approach that aims at discovering homogeneous groups of data instances and features by grouping them simultaneously. The proposed method uses the entropy regularized optimal transport between empirical measures defined on data instances and features in order to obtain an estimated joint probability density function represented by the optimal coupling matrix. This matrix is further factorized to obtain the induced row and columns partitions using multiscale representations approach. To justify our method theoretically, we show how the solution of the regularized optimal transport can be seen from the variational inference perspective thus motivating its use for co-clustering. The algorithm derived for the proposed method and its kernelized version based on the notion of Gromov-Wasserstein distance are fast, accurate and can determine automatically the number of both row and column clusters. These features are vividly demonstrated through extensive experimental evaluations.