Not enough data to create a plot.
Try a different view from the menu above.
Massimiliano Pontil
Online-Within-Online Meta-Learning
Giulia Denevi, Dimitris Stamos, Carlo Ciliberto, Massimiliano Pontil
We study the problem of learning a series of tasks in a fully online Meta-Learning setting. The goal is to exploit similarities among the tasks to incrementally adapt an inner online algorithm in order to incur a low averaged cumulative error over the tasks. We focus on a family of inner algorithms based on a parametrized variant of online Mirror Descent. The inner algorithm is incrementally adapted by an online Mirror Descent meta-algorithm using the corresponding within-task minimum regularized empirical risk as the meta-loss. In order to keep the process fully online, we approximate the meta-subgradients by the online inner algorithm. An upper bound on the approximation error allows us to derive a cumulative error bound for the proposed method. Our analysis can also be converted to the statistical setting by online-to-batch arguments. We instantiate two examples of the framework in which the meta-parameter is either a common bias vector or feature map. Finally, preliminary numerical experiments confirm our theoretical findings.
Empirical Risk Minimization Under Fairness Constraints
Michele Donini, Luca Oneto, Shai Ben-David, John S. Shawe-Taylor, Massimiliano Pontil
Learning To Learn Around A Common Mean
Giulia Denevi, Carlo Ciliberto, Dimitris Stamos, Massimiliano Pontil
Bilevel learning of the Group Lasso structure
Jordan Frecon, Saverio Salzo, Massimiliano Pontil
Differential Properties of Sinkhorn Approximation for Learning with Wasserstein Distance
Giulia Luise, Alessandro Rudi, Massimiliano Pontil, Carlo Ciliberto
Applications of optimal transport have recently gained remarkable attention as a result of the computational advantages of entropic regularization. However, in most situations the Sinkhorn approximation to the Wasserstein distance is replaced by a regularized version that is less accurate but easy to differentiate. In this work we characterize the differential properties of the original Sinkhorn approximation, proving that it enjoys the same smoothness of its regularized version and we explicitly provide an efficient algorithm to compute its gradient. We show that this result benefits both theory and applications: on one hand, high order smoothness confers statistical guarantees to learning with Wasserstein approximations. On the other hand, the gradient formula is used to efficiently solve learning and optimization problems in practice. Promising preliminary experiments complement our analysis.
Empirical Risk Minimization Under Fairness Constraints
Michele Donini, Luca Oneto, Shai Ben-David, John S. Shawe-Taylor, Massimiliano Pontil
We address the problem of algorithmic fairness: ensuring that sensitive information does not unfairly influence the outcome of a classifier. We present an approach based on empirical risk minimization, which incorporates a fairness constraint into the learning problem. It encourages the conditional risk of the learned classifier to be approximately constant with respect to the sensitive variable. We derive both risk and fairness bounds that support the statistical consistency of our methodology. We specify our approach to kernel methods and observe that the fairness requirement implies an orthogonality constraint which can be easily added to these methods. We further observe that for linear models the constraint translates into a simple data preprocessing step. Experiments indicate that the method is empirically effective and performs favorably against state-of-the-art approaches.
Online-Within-Online Meta-Learning
Giulia Denevi, Dimitris Stamos, Carlo Ciliberto, Massimiliano Pontil
Learning To Learn Around A Common Mean
Giulia Denevi, Carlo Ciliberto, Dimitris Stamos, Massimiliano Pontil
Sinkhorn Barycenters with Free Support via Frank-Wolfe Algorithm
Giulia Luise, Saverio Salzo, Massimiliano Pontil, Carlo Ciliberto
We present a novel algorithm to estimate the barycenter of arbitrary probability distributions with respect to the Sinkhorn divergence. Based on a Frank-Wolfe optimization strategy, our approach proceeds by populating the support of the barycenter incrementally, without requiring any pre-allocation. We consider discrete as well as continuous distributions, proving convergence rates of the proposed algorithm in both settings. Key elements of our analysis are a new result showing that the Sinkhorn divergence on compact domains has Lipschitz continuous gradient with respect to the Total Variation and a characterization of the sample complexity of Sinkhorn potentials.