Massimiliano Pontil
Online-Within-Online Meta-Learning
Giulia Denevi, Dimitris Stamos, Carlo Ciliberto, Massimiliano Pontil
Learning To Learn Around A Common Mean
Giulia Denevi, Carlo Ciliberto, Dimitris Stamos, Massimiliano Pontil
Empirical Risk Minimization Under Fairness Constraints
Michele Donini, Luca Oneto, Shai Ben-David, John S. Shawe-Taylor, Massimiliano Pontil
Sinkhorn Barycenters with Free Support via Frank-Wolfe Algorithm
Giulia Luise, Saverio Salzo, Massimiliano Pontil, Carlo Ciliberto
We present a novel algorithm to estimate the barycenter of arbitrary probability distributions with respect to the Sinkhorn divergence. Based on a Frank-Wolfe optimization strategy, our approach proceeds by populating the support of the barycenter incrementally, without requiring any pre-allocation. We consider discrete as well as continuous distributions, proving convergence rates of the proposed algorithm in both settings. Key elements of our analysis are a new result showing that the Sinkhorn divergence on compact domains has Lipschitz continuous gradient with respect to the Total Variation and a characterization of the sample complexity of Sinkhorn potentials.
Online-Within-Online Meta-Learning
Giulia Denevi, Dimitris Stamos, Carlo Ciliberto, Massimiliano Pontil
We study the problem of learning a series of tasks in a fully online Meta-Learning setting. The goal is to exploit similarities among the tasks to incrementally adapt an inner online algorithm in order to incur a low averaged cumulative error over the tasks. We focus on a family of inner algorithms based on a parametrized variant of online Mirror Descent. The inner algorithm is incrementally adapted by an online Mirror Descent meta-algorithm using the corresponding within-task minimum regularized empirical risk as the meta-loss. In order to keep the process fully online, we approximate the meta-subgradients by the online inner algorithm. An upper bound on the approximation error allows us to derive a cumulative error bound for the proposed method. Our analysis can also be converted to the statistical setting by online-to-batch arguments. We instantiate two examples of the framework in which the meta-parameter is either a common bias vector or feature map. Finally, preliminary numerical experiments confirm our theoretical findings.
Sinkhorn Barycenters with Free Support via Frank-Wolfe Algorithm
Giulia Luise, Saverio Salzo, Massimiliano Pontil, Carlo Ciliberto
We present a novel algorithm to estimate the barycenter of arbitrary probability distributions with respect to the Sinkhorn divergence. Based on a Frank-Wolfe optimization strategy, our approach proceeds by populating the support of the barycenter incrementally, without requiring any pre-allocation. We consider discrete as well as continuous distributions, proving convergence rates of the proposed algorithm in both settings. Key elements of our analysis are a new result showing that the Sinkhorn divergence on compact domains has Lipschitz continuous gradient with respect to the Total Variation and a characterization of the sample complexity of Sinkhorn potentials.
Mistake Bounds for Binary Matrix Completion
Mark Herbster, Stephen Pasteris, Massimiliano Pontil
We study the problem of completing a binary matrix in an online learning setting. On each trial we predict a matrix entry and then receive the true entry. We propose a Matrix Exponentiated Gradient algorithm [1] to solve this problem. We provide a mistake bound for the algorithm, which scales with the margin complexity [2, 3] of the underlying matrix. The bound suggests an interpretation where each row of the matrix is a prediction task over a finite set of objects, the columns. Using this we show that the algorithm makes a number of mistakes which is comparable up to a logarithmic factor to the number of mistakes made by the Kernel Perceptron with an optimal kernel in hindsight. We discuss applications of the algorithm to predicting as well as the best biclustering and to the problem of predicting the labeling of a graph without knowing the graph in advance.
Consistent Multitask Learning with Nonlinear Output Relations
Carlo Ciliberto, Alessandro Rudi, Lorenzo Rosasco, Massimiliano Pontil
Key to multitask learning is exploiting the relationships between different tasks in order to improve prediction performance. Most previous methods have focused on the case where tasks relations can be modeled as linear operators and regularization approaches can be used successfully. However, in practice assuming the tasks to be linearly related is often restrictive, and allowing for nonlinear structures is a challenge. In this paper, we tackle this issue by casting the problem within the framework of structured prediction. Our main contribution is a novel algorithm for learning multiple tasks which are related by a system of nonlinear equations that their joint outputs need to satisfy. We show that our algorithm can be efficiently implemented and study its generalization properties, proving universal consistency and learning rates. Our theoretical analysis highlights the benefits of non-linear multitask learning over learning the tasks independently. Encouraging experimental results show the benefits of the proposed method in practice.
Learning To Learn Around A Common Mean
Giulia Denevi, Carlo Ciliberto, Dimitris Stamos, Massimiliano Pontil