Goto

Collaborating Authors

 Martires, Pedro Zuidberg Dos


Neurosymbolic Decision Trees

arXiv.org Artificial Intelligence

Neurosymbolic (NeSy) AI studies the integration of neural networks (NNs) and symbolic reasoning based on logic. Usually, NeSy techniques focus on learning the neural, probabilistic and/or fuzzy parameters of NeSy models. Learning the symbolic or logical structure of such models has, so far, received less attention. We introduce neurosymbolic decision trees (NDTs), as an extension of decision trees together with a novel NeSy structure learning algorithm, which we dub NeuID3. NeuID3 adapts the standard top-down induction of decision tree algorithms and combines it with a neural probabilistic logic representation, inherited from the DeepProbLog family of models. The key advantage of learning NDTs with NeuID3 is the support of both symbolic and subsymbolic data (such as images), and that they can exploit background knowledge during the induction of the tree structure, In our experimental evaluation we demonstrate the benefits of NeSys structure learning over more traditonal approaches such as purely data-driven learning with neural networks.


A Fast Convoluted Story: Scaling Probabilistic Inference for Integer Arithmetic

arXiv.org Artificial Intelligence

As illustrated by the success of integer linear programming, linear integer arithmetic is a powerful tool for modelling combinatorial problems. Furthermore, the probabilistic extension of linear programming has been used to formulate problems in neurosymbolic AI. However, two key problems persist that prevent the adoption of neurosymbolic techniques beyond toy problems. First, probabilistic inference is inherently hard, #P-hard to be precise. Second, the discrete nature of integers renders the construction of meaningful gradients challenging, which is problematic for learning. In order to mitigate these issues, we formulate linear arithmetic over integer-valued random variables as tensor manipulations that can be implemented in a straightforward fashion using modern deep learning libraries. At the core of our formulation lies the observation that the addition of two integer-valued random variables can be performed by adapting the fast Fourier transform to probabilities in the log-domain. By relying on tensor operations we obtain a differentiable data structure, which unlocks, virtually for free, gradient-based learning. In our experimental validation we show that tensorising probabilistic linear integer arithmetic and leveraging the fast Fourier transform allows us to push the state of the art by several orders of magnitude in terms of inference and learning times.


KLay: Accelerating Neurosymbolic AI

arXiv.org Artificial Intelligence

A popular approach to neurosymbolic AI involves mapping logic formulas to arithmetic circuits (computation graphs consisting of sums and products) and passing the outputs of a neural network through these circuits. This approach enforces symbolic constraints onto a neural network in a principled and end-toend differentiable way. Unfortunately, arithmetic circuits are challenging to run on modern AI accelerators as they exhibit a high degree of irregular sparsity. Interest in neurosymbolic AI (Hitzler & Sarker, 2022) continues to grow as the integration of symbolic reasoning and neural networks has been shown to increase reasoning capabilities (Yi et al., 2018; Trinh et al., 2024), safety (Yang et al., 2023), controllability (Jiao et al., 2024), and interpretability (Koh et al., 2020). Furthermore, neurosymbolic methods often require less data by allowing a richer and more explicit set of priors (Diligenti et al., 2017; Manhaeve et al., 2018). However, as the computational structure of many neurosymbolic models is partially dense (in its neural component) and partially sparse (in its symbolic component), efficiently learning neurosymbolic models still presents a challenge (Wan et al., 2024). So far, the symbolic components of these neurosymbolic models have struggled to fully exploit the potential of modern AI accelerators. Our work focuses on a particular flavor of neurosymbolic AI, pioneered by Xu et al. (2018) and Manhaeve et al. (2018), which performs probabilistic inference on the outputs of a neural network. This is achieved by encoding the symbolic knowledge using arithmetic circuits.


REvolve: Reward Evolution with Large Language Models for Autonomous Driving

arXiv.org Artificial Intelligence

Designing effective reward functions is crucial to training reinforcement learning (RL) algorithms. However, this design is non-trivial, even for domain experts, due to the subjective nature of certain tasks that are hard to quantify explicitly. In recent works, large language models (LLMs) have been used for reward generation from natural language task descriptions, leveraging their extensive instruction tuning and commonsense understanding of human behavior. In this work, we hypothesize that LLMs, guided by human feedback, can be used to formulate human-aligned reward functions. Specifically, we study this in the challenging setting of autonomous driving (AD), wherein notions of "good" driving are tacit and hard to quantify. To this end, we introduce REvolve, an evolutionary framework that uses LLMs for reward design in AD. REvolve creates and refines reward functions by utilizing human feedback to guide the evolution process, effectively translating implicit human knowledge into explicit reward functions for training (deep) RL agents. We demonstrate that agents trained on REvolve-designed rewards align closely with human driving standards, thereby outperforming other state-of-the-art baselines.


Probabilistic Neural Circuits

arXiv.org Machine Learning

Probabilistic circuits (PCs) have gained prominence in recent years as a versatile framework for discussing probabilistic models that support tractable queries and are yet expressive enough to model complex probability distributions. Nevertheless, tractability comes at a cost: PCs are less expressive than neural networks. In this paper we introduce probabilistic neural circuits (PNCs), which strike a balance between PCs and neural nets in terms of tractability and expressive power. Theoretically, we show that PNCs can be interpreted as deep mixtures of Bayesian networks. Experimentally, we demonstrate that PNCs constitute powerful function approximators.


Semirings for Probabilistic and Neuro-Symbolic Logic Programming

arXiv.org Artificial Intelligence

The original framework of Poole and Sato extended the logic programming language Prolog (Flach, 1994) with probabilistic facts. These are facts that are annotated with the probability that they are true; they play a role similar to the parentless nodes in Bayesian networks in that they are marginally independent of one another, and that the probabilistic dependencies are induced by the rules of the logic program. This resulted in the celebrated distribution semantics (Sato, 1995) that is the basis of probabilistic logic programming, and the corresponding learning algorithm in the PRISM language (Sato, 1995) constitutes - to the best of the authors' knowledge - the very first probabilistic programming language with built-in support for machine learning. The work of Sato and Poole has inspired many follow-up works on inference and learning, and has also introduced many variations and extensions of the probabilistic logic programming and its celebrated distribution semantics.


SayCanPay: Heuristic Planning with Large Language Models using Learnable Domain Knowledge

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have demonstrated impressive planning abilities due to their vast "world knowledge". Yet, obtaining plans that are both feasible (grounded in affordances) and cost-effective (in plan length), remains a challenge, despite recent progress. This contrasts with heuristic planning methods that employ domain knowledge (formalized in action models such as PDDL) and heuristic search to generate feasible, optimal plans. Inspired by this, we propose to combine the power of LLMs and heuristic planning by leveraging the world knowledge of LLMs and the principles of heuristic search. Our approach, SayCanPay, employs LLMs to generate actions (Say) guided by learnable domain knowledge, that evaluates actions' feasibility (Can) and long-term reward/payoff (Pay), and heuristic search to select the best sequence of actions. Our contributions are (1) a novel framing of the LLM planning problem in the context of heuristic planning, (2) integrating grounding and cost-effective elements into the generated plans, and (3) using heuristic search over actions. Our extensive evaluations show that our model surpasses other LLM planning approaches.


Top-Down Knowledge Compilation for Counting Modulo Theories

arXiv.org Artificial Intelligence

Propositional model counting (#SAT) can be solved efficiently when the input formula is in deterministic decomposable negation normal form (d-DNNF). Translating an arbitrary formula into a representation that allows inference tasks, such as counting, to be performed efficiently, is called knowledge compilation. Top-down knowledge compilation is a state-of-the-art technique for solving #SAT problems that leverages the traces of exhaustive DPLL search to obtain d-DNNF representations. While knowledge compilation is well studied for propositional approaches, knowledge compilation for the (quantifier free) counting modulo theory setting (#SMT) has been studied to a much lesser degree. In this paper, we discuss compilation strategies for #SMT. We specifically advocate for a top-down compiler based on the traces of exhaustive DPLL(T) search.


Differentiable Sampling of Categorical Distributions Using the CatLog-Derivative Trick

arXiv.org Machine Learning

Categorical random variables can faithfully represent the discrete and uncertain aspects of data as part of a discrete latent variable model. Learning in such models necessitates taking gradients with respect to the parameters of the categorical probability distributions, which is often intractable due to their combinatorial nature. A popular technique to estimate these otherwise intractable gradients is the Log-Derivative trick. This trick forms the basis of the well-known REINFORCE gradient estimator and its many extensions. While the Log-Derivative trick allows us to differentiate through samples drawn from categorical distributions, it does not take into account the discrete nature of the distribution itself. Our first contribution addresses this shortcoming by introducing the CatLog-Derivative trick - a variation of the Log-Derivative trick tailored towards categorical distributions. Secondly, we use the CatLog-Derivative trick to introduce IndeCateR, a novel and unbiased gradient estimator for the important case of products of independent categorical distributions with provably lower variance than REINFORCE. Thirdly, we empirically show that IndeCateR can be efficiently implemented and that its gradient estimates have significantly lower bias and variance for the same number of samples compared to the state of the art.


Neural Probabilistic Logic Programming in Discrete-Continuous Domains

arXiv.org Artificial Intelligence

Neural-symbolic AI (NeSy) allows neural networks to exploit symbolic background knowledge in the form of logic. It has been shown to aid learning in the limited data regime and to facilitate inference on out-of-distribution data. Probabilistic NeSy focuses on integrating neural networks with both logic and probability theory, which additionally allows learning under uncertainty. A major limitation of current probabilistic NeSy systems, such as DeepProbLog, is their restriction to finite probability distributions, i.e., discrete random variables. In contrast, deep probabilistic programming (DPP) excels in modelling and optimising continuous probability distributions. Hence, we introduce DeepSeaProbLog, a neural probabilistic logic programming language that incorporates DPP techniques into NeSy. Doing so results in the support of inference and learning of both discrete and continuous probability distributions under logical constraints. Our main contributions are 1) the semantics of DeepSeaProbLog and its corresponding inference algorithm, 2) a proven asymptotically unbiased learning algorithm, and 3) a series of experiments that illustrate the versatility of our approach.