Goto

Collaborating Authors

 Martinez-Taboada, Diego


Sequential Kernelized Stein Discrepancy

arXiv.org Machine Learning

We present a sequential version of the kernelized Stein discrepancy, which allows for conducting goodness-of-fit tests for unnormalized densities that are continuously monitored and adaptively stopped. That is, the sample size need not be fixed prior to data collection; the practitioner can choose whether to stop the test or continue to gather evidence at any time while controlling the false discovery rate. In stark contrast to related literature, we do not impose uniform boundedness on the Stein kernel. Instead, we exploit the potential boundedness of the Stein kernel at arbitrary point evaluations to define test martingales, that give way to the subsequent novel sequential tests. We prove the validity of the test, as well as an asymptotic lower bound for the logarithmic growth of the wealth process under the alternative. We further illustrate the empirical performance of the test with a variety of distributions, including restricted Boltzmann machines.


An Efficient Doubly-Robust Test for the Kernel Treatment Effect

arXiv.org Machine Learning

The average treatment effect, which is the difference in expectation of the counterfactuals, is probably the most popular target effect in causal inference with binary treatments. However, treatments may have effects beyond the mean, for instance decreasing or increasing the variance. We propose a new kernel-based test for distributional effects of the treatment. It is, to the best of our knowledge, the first kernel-based, doubly-robust test with provably valid type-I error. Furthermore, our proposed algorithm is computationally efficient, avoiding the use of permutations.