Goto

Collaborating Authors

 Martinez, Aritz D.


Evolutionary Multitask Optimization: a Methodological Overview, Challenges and Future Research Directions

arXiv.org Artificial Intelligence

In this work we consider multitasking in the context of solving multiple optimization problems simultaneously by conducting a single search process. The principal goal when dealing with this scenario is to dynamically exploit the existing complementarities among the problems (tasks) being optimized, helping each other through the exchange of valuable knowledge. Additionally, the emerging paradigm of Evolutionary Multitasking tackles multitask optimization scenarios by using as inspiration concepts drawn from Evolutionary Computation. The main purpose of this survey is to collect, organize and critically examine the abundant literature published so far in Evolutionary Multitasking, with an emphasis on the methodological patterns followed when designing new algorithmic proposals in this area (namely, multifactorial optimization and multipopulation-based multitasking). We complement our critical analysis with an identification of challenges that remain open to date, along with promising research directions that can stimulate future efforts in this topic. Our discussions held throughout this manuscript are offered to the audience as a reference of the general trajectory followed by the community working in this field in recent times, as well as a self-contained entry point for newcomers and researchers interested to join this exciting research avenue.


Lights and Shadows in Evolutionary Deep Learning: Taxonomy, Critical Methodological Analysis, Cases of Study, Learned Lessons, Recommendations and Challenges

arXiv.org Artificial Intelligence

Much has been said about the fusion of bio-inspired optimization algorithms and Deep Learning models for several purposes: from the discovery of network topologies and hyper-parametric configurations with improved performance for a given task, to the optimization of the model's parameters as a replacement for gradient-based solvers. Indeed, the literature is rich in proposals showcasing the application of assorted nature-inspired approaches for these tasks. In this work we comprehensively review and critically examine contributions made so far based on three axes, each addressing a fundamental question in this research avenue: a) optimization and taxonomy (Why?), including a historical perspective, definitions of optimization problems in Deep Learning, and a taxonomy associated with an in-depth analysis of the literature, b) critical methodological analysis (How?), which together with two case studies, allows us to address learned lessons and recommendations for good practices following the analysis of the literature, and c) challenges and new directions of research (What can be done, and what for?). In summary, three axes - optimization and taxonomy, critical analysis, and challenges - which outline a complete vision of a merger of two technologies drawing up an exciting future for this area of fusion research.


On the Transferability of Knowledge among Vehicle Routing Problems by using Cellular Evolutionary Multitasking

arXiv.org Artificial Intelligence

Multitasking optimization is a recently introduced paradigm, focused on the simultaneous solving of multiple optimization problem instances (tasks). The goal of multitasking environments is to dynamically exploit existing complementarities and synergies among tasks, helping each other through the transfer of genetic material. More concretely, Evolutionary Multitasking (EM) regards to the resolution of multitasking scenarios using concepts inherited from Evolutionary Computation. EM approaches such as the well-known Multifactorial Evolutionary Algorithm (MFEA) are lately gaining a notable research momentum when facing with multiple optimization problems. This work is focused on the application of the recently proposed Multifactorial Cellular Genetic Algorithm (MFCGA) to the well-known Capacitated Vehicle Routing Problem (CVRP). In overall, 11 different multitasking setups have been built using 12 datasets. The contribution of this research is twofold. On the one hand, it is the first application of the MFCGA to the Vehicle Routing Problem family of problems. On the other hand, equally interesting is the second contribution, which is focused on the quantitative analysis of the positive genetic transferability among the problem instances. To do that, we provide an empirical demonstration of the synergies arisen between the different optimization tasks.


dMFEA-II: An Adaptive Multifactorial Evolutionary Algorithm for Permutation-based Discrete Optimization Problems

arXiv.org Artificial Intelligence

The emerging research paradigm coined as multitasking optimization aims to solve multiple optimization tasks concurrently by means of a single search process. For this purpose, the exploitation of complementarities among the tasks to be solved is crucial, which is often achieved via the transfer of genetic material, thereby forging the Transfer Optimization field. In this context, Evolutionary Multitasking addresses this paradigm by resorting to concepts from Evolutionary Computation. Within this specific branch, approaches such as the Multifactorial Evolutionary Algorithm (MFEA) has lately gained a notable momentum when tackling multiple optimization tasks. This work contributes to this trend by proposing the first adaptation of the recently introduced Multifactorial Evolutionary Algorithm II (MFEA-II) to permutation-based discrete optimization environments. For modeling this adaptation, some concepts cannot be directly applied to discrete search spaces, such as parent-centric interactions. In this paper we entirely reformulate such concepts, making them suited to deal with permutation-based search spaces without loosing the inherent benefits of MFEA-II. The performance of the proposed solver has been assessed over 5 different multitasking setups, composed by 8 datasets of the well-known Traveling Salesman (TSP) and Capacitated Vehicle Routing Problems (CVRP). The obtained results and their comparison to those by the discrete version of the MFEA confirm the good performance of the developed dMFEA-II, and concur with the insights drawn in previous studies for continuous optimization.