Goto

Collaborating Authors

 Martin J. Wainwright



Privacy Aware Learning

Neural Information Processing Systems

We study statistical risk minimization problems under a version of privacy in which the data is kept confidential even from the learner. In this local privacy framework, we establish sharp upper and lower bounds on the convergence rates of statistical estimation procedures. As a consequence, we exhibit a precise tradeoff between the amount of privacy the data preserves and the utility, measured by convergence rate, of any statistical estimator.


Local Maxima in the Likelihood of Gaussian Mixture Models: Structural Results and Algorithmic Consequences

Neural Information Processing Systems

We provide two fundamental results on the population (infinite-sample) likelihood function of Gaussian mixture models with M 3 components. Our first main result shows that the population likelihood function has bad local maxima even in the special case of equally-weighted mixtures of well-separated and spherical Gaussians. We prove that the log-likelihood value of these bad local maxima can be arbitrarily worse than that of any global optimum, thereby resolving an open question of Srebro [2007].


A framework for Multi-A(rmed)/B(andit) Testing with Online FDR Control

Neural Information Processing Systems

We propose an alternative framework to existing setups for controlling false alarms when multiple A/B tests are run over time. This setup arises in many practical applications, e.g. when pharmaceutical companies test new treatment options against control pills for different diseases, or when internet companies test their default webpages versus various alternatives over time. Our framework proposes to replace a sequence of A/B tests by a sequence of best-arm MAB instances, which can be continuously monitored by the data scientist. When interleaving the MAB tests with an online false discovery rate (FDR) algorithm, we can obtain the best of both worlds: low sample complexity and any time online FDR control. Our main contributions are: (i) to propose reasonable definitions of a null hypothesis for MAB instances; (ii) to demonstrate how one can derive an always-valid sequential p-value that allows continuous monitoring of each MAB test; and (iii) to show that using rejection thresholds of online-FDR algorithms as the confidence levels for the MAB algorithms results in both sample-optimality, high power and low FDR at any point in time. We run extensive simulations to verify our claims, and also report results on real data collected from the New Yorker Cartoon Caption contest.


Kernel Feature Selection via Conditional Covariance Minimization

Neural Information Processing Systems

We propose a method for feature selection that employs kernel-based measures of independence to find a subset of covariates that is maximally predictive of the response. Building on past work in kernel dimension reduction, we show how to perform feature selection via a constrained optimization problem involving the trace of the conditional covariance operator. We prove various consistency results for this procedure, and also demonstrate that our method compares favorably with other state-of-the-art algorithms on a variety of synthetic and real data sets.


Early stopping for kernel boosting algorithms: A general analysis with localized complexities

Neural Information Processing Systems

Early stopping of iterative algorithms is a widely-used form of regularization in statistics, commonly used in conjunction with boosting and related gradienttype algorithms. Although consistency results have been established in some settings, such estimators are less well-understood than their analogues based on penalized regularization.


Theoretical guarantees for EM under misspecified Gaussian mixture models

Neural Information Processing Systems

Recent years have witnessed substantial progress in understanding the behavior of EM for mixture models that are correctly specified. Given that model misspecification is common in practice, it is important to understand EM in this more general setting. We provide non-asymptotic guarantees for the population and sample-based EM algorithms when used to estimate parameters of certain misspecified Gaussian mixture models.


Online control of the false discovery rate with decaying memory

Neural Information Processing Systems

In the online multiple testing problem, p-values corresponding to different null hypotheses are observed one by one, and the decision of whether or not to reject the current hypothesis must be made immediately, after which the next p-value is observed. Alpha-investing algorithms to control the false discovery rate (FDR), formulated by Foster and Stine, have been generalized and applied to many settings, including quality-preserving databases in science and multiple A/B or multi-armed bandit tests for internet commerce. This paper improves the class of generalized alpha-investing algorithms (GAI) in four ways: (a) we show how to uniformly improve the power of the entire class of monotone GAI procedures by awarding more alpha-wealth for each rejection, giving a win-win resolution to a recent dilemma raised by Javanmard and Montanari, (b) we demonstrate how to incorporate prior weights to indicate domain knowledge of which hypotheses are likely to be non-null, (c) we allow for differing penalties for false discoveries to indicate that some hypotheses may be more important than others, (d) we define a new quantity called the decaying memory false discovery rate (mem-FDR) that may be more meaningful for truly temporal applications, and which alleviates problems that we describe and refer to as "piggybacking" and "alpha-death." Our GAI++ algorithms incorporate all four generalizations simultaneously, and reduce to more powerful variants of earlier algorithms when the weights and decay are all set to unity. Finally, we also describe a simple method to derive new online FDR rules based on an estimated false discovery proportion.