Martin, Arnaud
Evidential uncertainties on rich labels for active learning
Hoarau, Arthur, Lemaire, Vincent, Martin, Arnaud, Dubois, Jean-Christophe, Gall, Yolande Le
Recent research in active learning, and more precisely in uncertainty sampling, has focused on the decomposition of model uncertainty into reducible and irreducible uncertainties. In this paper, we propose to simplify the computational phase and remove the dependence on observations, but more importantly to take into account the uncertainty already present in the labels, \emph{i.e.} the uncertainty of the oracles. Two strategies are proposed, sampling by Klir uncertainty, which addresses the exploration-exploitation problem, and sampling by evidential epistemic uncertainty, which extends the reducible uncertainty to the evidential framework, both using the theory of belief functions.
Estimation of the qualification and behavior of a contributor and aggregation of his answers in a crowdsourcing context
Thierry, Constance, Martin, Arnaud, Dubois, Jean-Christophe, Gall, Yolande Le
Crowdsourcing is the outsourcing of tasks to a crowd of contributors on a dedicated platform. The crowd on these platforms is very diversified and includes various profiles of contributors which generates data of uneven quality. However, majority voting, which is the aggregating method commonly used in platforms, gives equal weight to each contribution. To overcome this problem, we propose a method, MONITOR, which estimates the contributor's profile and aggregates the collected data by taking into account their possible imperfections thanks to the theory of belief functions. To do so, MONITOR starts by estimating the profile of the contributor through his qualification for the task and his behavior.Crowdsourcing campaigns have been carried out to collect the necessary data to test MONITOR on real data in order to compare it to existing approaches. The results of the experiments show that thanks to the use of the MONITOR method, we obtain a better rate of correct answer after aggregation of the contributions compared to the majority voting. Our contributions in this article are for the first time the proposal of a model that takes into account both the qualification of the contributor and his behavior in the estimation of his profile. For the second one, the weakening and the aggregation of the answers according to the estimated profiles.
Evidential positive opinion influence measures for viral marketing
Jendoubi, Siwar, Martin, Arnaud
The Viral Marketing is a relatively new form of marketing that exploits social networks to promote a brand, a product, etc. The idea behind it is to find a set of influencers on the network that can trigger a large cascade of propagation and adoptions. In this paper, we will introduce an evidential opinion-based influence maximization model for viral marketing. Besides, our approach tackles three opinions based scenarios for viral marketing in the real world. The first scenario concerns influencers who have a positive opinion about the product. The second scenario deals with influencers who have a positive opinion about the product and produce effects on users who also have a positive opinion. The third scenario involves influence users who have a positive opinion about the product and produce effects on the negative opinion of other users concerning the product in question. Next, we proposed six influence measures, two for each scenario. We also use an influence maximization model that the set of detected influencers for each scenario. Finally, we show the performance of the proposed model with each influence measure through some experiments conducted on a generated dataset and a real world dataset collected from Twitter.
Contributors profile modelization in crowdsourcing platforms
Thierry, Constance, Dubois, Jean-Christophe, Gall, Yolande Le, Martin, Arnaud
The crowdsourcing consists in the externalisation of tasks to a crowd of people remunerated to execute this ones. The crowd, usually diversified, can include users without qualification and/or motivation for the tasks. In this paper we will introduce a new method of user expertise modelization in the crowdsourcing platforms based on the theory of belief functions in order to identify serious and qualificated users.
Evidential community detection based on density peaks
Zhou, Kuang, Pan, Quan, Martin, Arnaud
Credal partitions in the framework of belief functions can give us a better understanding of the analyzed data set. In order to find credal community structure in graph data sets, in this paper, we propose a novel evidential community detection algorithm based on density peaks (EDPC). Two new metrics, the local density $\rho$ and the minimum dissimi-larity $\delta$, are first defined for each node in the graph. Then the nodes with both higher $\rho$ and $\delta$ values are identified as community centers. Finally, the remaing nodes are assigned with corresponding community labels through a simple two-step evidential label propagation strategy. The membership of each node is described in the form of basic belief assignments , which can well express the uncertainty included in the community structure of the graph. The experiments demonstrate the effectiveness of the proposed method on real-world networks.
A belief combination rule for a large number of sources
Zhou, Kuang, Martin, Arnaud, Pan, Quan
The theory of belief functions is widely used for data from multiple sources. Different evidence combination rules have been proposed in this framework according to the properties of the sources to combine. However, most of these combination rules are not efficient when there are a large number of sources. This is due to either the complexity or the existence of an absorbing element such as the total conflict mass function for the conjunctive based rules when applied on unreliable evidence. In this paper, based on the assumption that the majority of sources are reliable, a combination rule for a large number of sources is proposed using a simple idea: the more common ideas the sources share, the more reliable these sources are supposed to be. This rule is adaptable for aggregating a large number of sources which may not all be reliable. It will keep the spirit of the conjunctive rule to reinforce the belief on the focal elements with which the sources are in agreement. The mass on the emptyset will be kept as an indicator of the conflict. The proposed rule, called LNS-CR (Conjunctive combinationRule for a Large Number of Sources), is evaluated on synthetic mass functions. The experimental results verify that the rule can be effectively used to combine a large number of mass functions and to elicit the major opinion.
Dynamic time warping distance for message propagation classification in Twitter
Jendoubi, Siwar, Martin, Arnaud, Liétard, Ludovic, Yaghlane, Boutheina Ben, Hadji, Hend Ben
Social messages classification is a research domain that has attracted the attention of many researchers in these last years. Indeed, the social message is different from ordinary text because it has some special characteristics like its shortness. Then the development of new approaches for the processing of the social message is now essential to make its classification more efficient. In this paper, we are mainly interested in the classification of social messages based on their spreading on online social networks (OSN). We proposed a new distance metric based on the Dynamic Time Warping distance and we use it with the probabilistic and the evidential k Nearest Neighbors (k-NN) classifiers to classify propagation networks (PrNets) of messages. The propagation network is a directed acyclic graph (DAG) that is used to record propagation traces of the message, the traversed links and their types. We tested the proposed metric with the chosen k-NN classifiers on real world propagation traces that were collected from Twitter social network and we got good classification accuracies.
Fusion de classifieurs pour la classification d'images sonar
Martin, Arnaud
In this paper, we present some high level information fusion approaches for numeric and symbolic data. We study the interest of such method particularly for classifier fusion. A comparative study is made in a context of sea bed characterization from sonar images. The classi- fication of kind of sediment is a difficult problem because of the data complexity. We compare high level information fusion and give the obtained performance.
General combination rules for qualitative and quantitative beliefs
Martin, Arnaud, Osswald, Christophe, Dezert, Jean, Smarandache, Florentin
Martin and Osswald \cite{Martin07} have recently proposed many generalizations of combination rules on quantitative beliefs in order to manage the conflict and to consider the specificity of the responses of the experts. Since the experts express themselves usually in natural language with linguistic labels, Smarandache and Dezert \cite{Li07} have introduced a mathematical framework for dealing directly also with qualitative beliefs. In this paper we recall some element of our previous works and propose the new combination rules, developed for the fusion of both qualitative or quantitative beliefs.