Goto

Collaborating Authors

 Martignon, Laura


Bayesian Learning of Loglinear Models for Neural Connectivity

arXiv.org Machine Learning

This paper presents a Bayesian approach to learning the connectivity structure of a group of neurons from data on configuration frequencies. A major objective of the research is to provide statistical tools for detecting changes in firing patterns with changing stimuli. Our framework is not restricted to the well-understood case of pair interactions, but generalizes the Boltzmann machine model to allow for higher order interactions. The paper applies a Markov Chain Monte Carlo Model Composition (MC3) algorithm to search over connectivity structures and uses Laplace's method to approximate posterior probabilities of structures. Performance of the methods was tested on synthetic data. The models were also applied to data obtained by Vaadia on multi-unit recordings of several neurons in the visual cortex of a rhesus monkey in two different attentional states. Results confirmed the experimenters' conjecture that different attentional states were associated with different interaction structures.


On the Accuracy of Bounded Rationality: How Far from Optimal Is Fast and Frugal?

Neural Information Processing Systems

Fast and frugal heuristics are well studied models of bounded rationality. Psychologicalresearch has proposed the take-the-best heuristic as a successful strategy in decision making with limited resources. Take-thebest searchesfor a sufficiently good ordering of cues (features) in a task where objects are to be compared lexicographically. We investigate the complexity of the problem of approximating optimal cue permutations for lexicographic strategies. We show that no efficient algorithm can approximate theoptimum to within any constant factor, if P NP. We further consider a greedy approach for building lexicographic strategies and derive tight bounds for the performance ratio of a new and simple algorithm. This algorithm is proven to perform better than take-the-best.


Learning Exact Patterns of Quasi-synchronization among Spiking Neurons from Data on Multi-unit Recordings

Neural Information Processing Systems

This paper develops arguments for a family of temporal log-linear models to represent spatiotemporal correlations among the spiking events in a group of neurons. The models can represent not just pairwise correlations but also correlations of higher order. Methods are discussed for inferring the existence or absence of correlations and estimating their strength. A frequentist and a Bayesian approach to correlation detection are compared.


Learning Exact Patterns of Quasi-synchronization among Spiking Neurons from Data on Multi-unit Recordings

Neural Information Processing Systems

This paper develops arguments for a family of temporal log-linear models to represent spatiotemporal correlations among the spiking events in a group of neurons. The models can represent not just pairwise correlations but also correlations of higher order. Methods are discussed for inferring the existence or absence of correlations and estimating their strength. A frequentist and a Bayesian approach to correlation detection are compared.


Learning Exact Patterns of Quasi-synchronization among Spiking Neurons from Data on Multi-unit Recordings

Neural Information Processing Systems

This paper develops arguments for a family of temporal log-linear models to represent spatiotemporal correlations among the spiking events in a group of neurons. The models can represent not just pairwise correlations but also correlations of higher order. Methods are discussed for inferring the existence or absence of correlations and estimating their strength. A frequentist and a Bayesian approach to correlation detection are compared.