Goto

Collaborating Authors

 Marteau, Pierre-François


WikiNER-fr-gold: A Gold-Standard NER Corpus

arXiv.org Artificial Intelligence

We address in this article the the quality of the WikiNER corpus, a multilingual Named Entity Recognition corpus, and provide a consolidated version of it. The annotation of WikiNER was produced in a semi-supervised manner i.e. no manual verification has been carried out a posteriori. Such corpus is called silver-standard. In this paper we propose WikiNER-fr-gold which is a revised version of the French proportion of WikiNER. Our corpus consists of randomly sampled 20% of the original French sub-corpus (26,818 sentences with 700k tokens). We start by summarizing the entity types included in each category in order to define an annotation guideline, and then we proceed to revise the corpus. Finally we present an analysis of errors and inconsistency observed in the WikiNER-fr corpus, and we discuss potential future work directions.


Time Elastic Neural Networks

arXiv.org Artificial Intelligence

We introduce and detail an atypical neural network architecture, called time elastic neural network (teNN), for multivariate time series classification. The novelty compared to classical neural network architecture is that it explicitly incorporates time warping ability, as well as a new way of considering attention. In addition, this architecture is capable of learning a dropout strategy, thus optimizing its own architecture.Behind the design of this architecture, our overall objective is threefold: firstly, we are aiming at improving the accuracy of instance based classification approaches that shows quite good performances as far as enough training data is available. Secondly we seek to reduce the computational complexity inherent to these methods to improve their scalability. Ideally, we seek to find an acceptable balance between these first two criteria. And finally, we seek to enhance the explainability of the decision provided by this kind of neural architecture.The experiment demonstrates that the stochastic gradient descent implemented to train a teNN is quite effective. To the extent that the selection of some critical meta-parameters is correct, convergence is generally smooth and fast.While maintaining good accuracy, we get a drastic gain in scalability by first reducing the required number of reference time series, i.e. the number of teNN cells required. Secondly, we demonstrate that, during the training process, the teNN succeeds in reducing the number of neurons required within each cell. Finally, we show that the analysis of the activation and attention matrices as well as the reference time series after training provides relevant information to interpret and explain the classification results.The comparative study that we have carried out and which concerns around thirty diverse and multivariate datasets shows that the teNN obtains results comparable to those of the state of the art, in particular similar to those of a network mixing LSTM and CNN architectures for example.


Open challenges for Machine Learning based Early Decision-Making research

arXiv.org Artificial Intelligence

More and more applications require early decisions, i.e. taken as soon as possible from partially observed data. However, the later a decision is made, the more its accuracy tends to improve, since the description of the problem to hand is enriched over time. Such a compromise between the earliness and the accuracy of decisions has been particularly studied in the field of Early Time Series Classification. This paper introduces a more general problem, called Machine Learning based Early Decision Making (ML-EDM), which consists in optimizing the decision times of models in a wide range of settings where data is collected over time. After defining the ML-EDM problem, ten challenges are identified and proposed to the scientific community to further research in this area. These challenges open important application perspectives, discussed in this paper.