Goto

Collaborating Authors

 Marta, Daniel


The Impact of VR and 2D Interfaces on Human Feedback in Preference-Based Robot Learning

arXiv.org Artificial Intelligence

Aligning robot navigation with human preferences is essential for ensuring comfortable and predictable robot movement in shared spaces, facilitating seamless human-robot coexistence. While preference-based learning methods, such as reinforcement learning from human feedback (RLHF), enable this alignment, the choice of the preference collection interface may influence the process. Traditional 2D interfaces provide structured views but lack spatial depth, whereas immersive VR offers richer perception, potentially affecting preference articulation. This study systematically examines how the interface modality impacts human preference collection and navigation policy alignment. We introduce a novel dataset of 2,325 human preference queries collected through both VR and 2D interfaces, revealing significant differences in user experience, preference consistency, and policy outcomes. Our findings highlight the trade-offs between immersion, perception, and preference reliability, emphasizing the importance of interface selection in preference-based robot learning. The dataset will be publicly released to support future research.


PREDILECT: Preferences Delineated with Zero-Shot Language-based Reasoning in Reinforcement Learning

arXiv.org Artificial Intelligence

Preference-based reinforcement learning (RL) has emerged as a new field in robot learning, where humans play a pivotal role in shaping robot behavior by expressing preferences on different sequences of state-action pairs. However, formulating realistic policies for robots demands responses from humans to an extensive array of queries. In this work, we approach the sample-efficiency challenge by expanding the information collected per query to contain both preferences and optional text prompting. To accomplish this, we leverage the zero-shot capabilities of a large language model (LLM) to reason from the text provided by humans. To accommodate the additional query information, we reformulate the reward learning objectives to contain flexible highlights -- state-action pairs that contain relatively high information and are related to the features processed in a zero-shot fashion from a pretrained LLM. In both a simulated scenario and a user study, we reveal the effectiveness of our work by analyzing the feedback and its implications. Additionally, the collective feedback collected serves to train a robot on socially compliant trajectories in a simulated social navigation landscape. We provide video examples of the trained policies at https://sites.google.com/view/rl-predilect