Goto

Collaborating Authors

 Martí, Robert


FoPro-KD: Fourier Prompted Effective Knowledge Distillation for Long-Tailed Medical Image Recognition

arXiv.org Artificial Intelligence

Representational transfer from publicly available models is a promising technique for improving medical image classification, especially in long-tailed datasets with rare diseases. However, existing methods often overlook the frequency-dependent behavior of these models, thereby limiting their effectiveness in transferring representations and generalizations to rare diseases. In this paper, we propose FoPro-KD, a novel framework that leverages the power of frequency patterns learned from frozen pre-trained models to enhance their transferability and compression, presenting a few unique insights: 1) We demonstrate that leveraging representations from publicly available pre-trained models can substantially improve performance, specifically for rare classes, even when utilizing representations from a smaller pre-trained model. 2) We observe that pre-trained models exhibit frequency preferences, which we explore using our proposed Fourier Prompt Generator (FPG), allowing us to manipulate specific frequencies in the input image, enhancing the discriminative representational transfer. 3) By amplifying or diminishing these frequencies in the input image, we enable Effective Knowledge Distillation (EKD). EKD facilitates the transfer of knowledge from pre-trained models to smaller models. Through extensive experiments in long-tailed gastrointestinal image recognition and skin lesion classification, where rare diseases are prevalent, our FoPro-KD framework outperforms existing methods, enabling more accessible medical models for rare disease classification. Code is available at https://github.com/xmed-lab/FoPro-KD.


Federated Model Aggregation via Self-Supervised Priors for Highly Imbalanced Medical Image Classification

arXiv.org Artificial Intelligence

In the medical field, federated learning commonly deals with highly imbalanced datasets, including skin lesions and gastrointestinal images. Existing federated methods under highly imbalanced datasets primarily focus on optimizing a global model without incorporating the intra-class variations that can arise in medical imaging due to different populations, findings, and scanners. In this paper, we study the inter-client intra-class variations with publicly available self-supervised auxiliary networks. Specifically, we find that employing a shared auxiliary pre-trained model, like MoCo-V2, locally on every client yields consistent divergence measurements. Based on these findings, we derive a dynamic balanced model aggregation via self-supervised priors (MAS) to guide the global model optimization. Fed-MAS can be utilized with different local learning methods for effective model aggregation toward a highly robust and unbiased global model.