Goto

Collaborating Authors

 Markowitz, Jared


Handling Cost and Constraints with Off-Policy Deep Reinforcement Learning

arXiv.org Artificial Intelligence

By reusing data throughout training, off-policy deep reinforcement learning algorithms offer improved sample efficiency relative to on-policy approaches. For continuous action spaces, the most popular methods for off-policy learning include policy improvement steps where a learned state-action ($Q$) value function is maximized over selected batches of data. These updates are often paired with regularization to combat associated overestimation of $Q$ values. With an eye toward safety, we revisit this strategy in environments with "mixed-sign" reward functions; that is, with reward functions that include independent positive (incentive) and negative (cost) terms. This setting is common in real-world applications, and may be addressed with or without constraints on the cost terms. We find the combination of function approximation and a term that maximizes $Q$ in the policy update to be problematic in such environments, because systematic errors in value estimation impact the contributions from the competing terms asymmetrically. This results in overemphasis of either incentives or costs and may severely limit learning. We explore two remedies to this issue. First, consistent with prior work, we find that periodic resetting of $Q$ and policy networks can be used to reduce value estimation error and improve learning in this setting. Second, we formulate novel off-policy actor-critic methods for both unconstrained and constrained learning that do not explicitly maximize $Q$ in the policy update. We find that this second approach, when applied to continuous action spaces with mixed-sign rewards, consistently and significantly outperforms state-of-the-art methods augmented by resetting. We further find that our approach produces agents that are both competitive with popular methods overall and more reliably competent on frequently-studied control problems that do not have mixed-sign rewards.


A Risk-Sensitive Approach to Policy Optimization

arXiv.org Artificial Intelligence

Standard deep reinforcement learning (DRL) aims to maximize expected reward, considering collected experiences equally in formulating a policy. This differs from human decision-making, where gains and losses are valued differently and outlying outcomes are given increased consideration. It also fails to capitalize on opportunities to improve safety and/or performance through the incorporation of distributional context. Several approaches to distributional DRL have been investigated, with one popular strategy being to evaluate the projected distribution of returns for possible actions. We propose a more direct approach whereby risk-sensitive objectives, specified in terms of the cumulative distribution function (CDF) of the distribution of full-episode rewards, are optimized. This approach allows for outcomes to be weighed based on relative quality, can be used for both continuous and discrete action spaces, and may naturally be applied in both constrained and unconstrained settings. We show how to compute an asymptotically consistent estimate of the policy gradient for a broad class of risk-sensitive objectives via sampling, subsequently incorporating variance reduction and regularization measures to facilitate effective on-policy learning. We then demonstrate that the use of moderately "pessimistic" risk profiles, which emphasize scenarios where the agent performs poorly, leads to enhanced exploration and a continual focus on addressing deficiencies. We test the approach using different risk profiles in six OpenAI Safety Gym environments, comparing to state of the art on-policy methods. Without cost constraints, we find that pessimistic risk profiles can be used to reduce cost while improving total reward accumulation. With cost constraints, they are seen to provide higher positive rewards than risk-neutral approaches at the prescribed allowable cost.


Clipped-Objective Policy Gradients for Pessimistic Policy Optimization

arXiv.org Artificial Intelligence

To facilitate efficient learning, policy gradient approaches to deep reinforcement learning (RL) are typically paired with variance reduction measures and strategies for making large but safe policy changes based on a batch of experiences. Natural policy gradient methods, including Trust Region Policy Optimization (TRPO), seek to produce monotonic improvement through bounded changes in policy outputs. Proximal Policy Optimization (PPO) is a commonly used, first-order algorithm that instead uses loss clipping to take multiple safe optimization steps per batch of data, replacing the bound on the single step of TRPO with regularization on multiple steps. In this work, we find that the performance of PPO, when applied to continuous action spaces, may be consistently improved through a simple change in objective. Instead of the importance sampling objective of PPO, we instead recommend a basic policy gradient, clipped in an equivalent fashion. While both objectives produce biased gradient estimates with respect to the RL objective, they also both display significantly reduced variance compared to the unbiased off-policy policy gradient. Additionally, we show that (1) the clipped-objective policy gradient (COPG) objective is on average "pessimistic" compared to both the PPO objective and (2) this pessimism promotes enhanced exploration. As a result, we empirically observe that COPG produces improved learning compared to PPO in single-task, constrained, and multi-task learning, without adding significant computational cost or complexity. Compared to TRPO, the COPG approach is seen to offer comparable or superior performance, while retaining the simplicity of a first-order method.


Objectness-Guided Open Set Visual Search and Closed Set Detection

arXiv.org Artificial Intelligence

Searching for small objects in large images is currently challenging for deep learning systems, but is a task with numerous applications including remote sensing and medical imaging. Thorough scanning of very large images is computationally expensive, particularly at resolutions sufficient to capture small objects. The smaller an object of interest, the more likely it is to be obscured by clutter or otherwise deemed insignificant. We examine these issues in the context of two complementary problems: closed-set object detection and open-set target search. First, we present a method for predicting pixel-level objectness from a low resolution gist image, which we then use to select regions for subsequent evaluation at high resolution. This approach has the benefit of not being fixed to a predetermined grid, allowing fewer costly high-resolution glimpses than existing methods. Second, we propose a novel strategy for open-set visual search that seeks to find all objects in an image of the same class as a given target reference image. We interpret both detection problems through a probabilistic, Bayesian lens, whereby the objectness maps produced by our method serve as priors in a maximum-a-posteriori approach to the detection step. We evaluate the end-to-end performance of both the combination of our patch selection strategy with this target search approach and the combination of our patch selection strategy with standard object detection methods. Both our patch selection and target search approaches are seen to significantly outperform baseline strategies.


On the Complexity of Reconnaissance Blind Chess

arXiv.org Artificial Intelligence

This paper provides a complexity analysis for the game of reconnaissance blind chess (RBC), a recently-introduced variant of chess where each player does not know the positions of the opponent's pieces a priori but may reveal a subset of them through chosen, private sensing actions. In contrast to commonly studied imperfect information games like poker and Kriegspiel, an RBC player does not know what the opponent knows or has chosen to learn, exponentially expanding the size of the game's information sets (i.e., the number of possible game states that are consistent with what a player has observed). Effective RBC sensing and moving strategies must account for the uncertainty of both players, an essential element of many real-world decision-making problems. Here we evaluate RBC from a game theoretic perspective, tracking the proliferation of information sets from the perspective of selected canonical bot players in tournament play. We show that, even for effective sensing strategies, the game sizes of RBC compare to those of Go while the average size of a player's information set throughout an RBC game is much greater than that of a player in Heads-up Limit Hold 'Em. We compare these measures of complexity among different playing algorithms and provide cursory assessments of the various sensing and moving strategies.