Goto

Collaborating Authors

 Markowitz, Elan


K-Edit: Language Model Editing with Contextual Knowledge Awareness

arXiv.org Artificial Intelligence

As the world changes, we need to be able to update our models and correct false information without costly retraining. Knowledge-based model editing enables precise modifications to the weights of large language models in order to modify the information encoded within. Recent approaches have seen success in enabling recall of edited information for thousands of edits at once. However, these approaches fail to produce edits that account for associated contextual information. We present K-Edit, an effective approach to generating contextually consistent knowledge edits. By using knowledge graphs, which maintain contextual consistency when an edge is edited, we are able to generate additional \textit{contextual edits} that ensure consistency of related information in the language model. Our experiments demonstrate significant improvements in multi-hop question answering while maintaining the general effectiveness and scalability of model edits.


Multi-Task Knowledge Enhancement for Zero-Shot and Multi-Domain Recommendation in an AI Assistant Application

arXiv.org Artificial Intelligence

Recommender systems have found significant commercial success but still struggle with integrating new users. Since users often interact with content in different domains, it is possible to leverage a user's interactions in previous domains to improve that user's recommendations in a new one (multi-domain recommendation). A separate research thread on knowledge graph enhancement uses external knowledge graphs to improve single domain recommendations (knowledge graph enhancement). Both research threads incorporate related information to improve predictions in a new domain. We propose in this work to unify these approaches: Using information from interactions in other domains as well as external knowledge graphs to make predictions in a new domain that would be impossible with either information source alone. We apply these ideas to a dataset derived from millions of users' requests for content across three domains (videos, music, and books) in a live virtual assistant application. We demonstrate the advantage of combining knowledge graph enhancement with previous multi-domain recommendation techniques to provide better overall recommendations as well as for better recommendations on new users of a domain.