Mariani, Stefano
A Roadmap Towards Improving Multi-Agent Reinforcement Learning With Causal Discovery And Inference
Briglia, Giovanni, Mariani, Stefano, Zambonelli, Franco
Causal reasoning is increasingly used in Reinforcement Learning (RL) to improve the learning process in several dimensions: efficacy of learned policies, efficiency of convergence, generalisation capabilities, safety and interpretability of behaviour. However, applications of causal reasoning to Multi-Agent RL (MARL) are still mostly unexplored. In this paper, we take the first step in investigating the opportunities and challenges of applying causal reasoning in MARL. We measure the impact of a simple form of causal augmentation in state-of-the-art MARL scenarios increasingly requiring cooperation, and with state-of-the-art MARL algorithms exploiting various degrees of collaboration between agents. Then, we discuss the positive as well as negative results achieved, giving us the chance to outline the areas where further research may help to successfully transfer causal RL to the multi-agent setting.
Space-Fluid Adaptive Sampling by Self-Organisation
Casadei, Roberto, Mariani, Stefano, Pianini, Danilo, Viroli, Mirko, Zambonelli, Franco
A recurrent task in coordinated systems is managing (estimating, predicting, or controlling) signals that vary in space, such as distributed sensed data or computation outcomes. Especially in large-scale settings, the problem can be addressed through decentralised and situated computing systems: nodes can locally sense, process, and act upon signals, and coordinate with neighbours to implement collective strategies. Accordingly, in this work we devise distributed coordination strategies for the estimation of a spatial phenomenon through collaborative adaptive sampling. Our design is based on the idea of dynamically partitioning space into regions that compete and grow/shrink to provide accurate aggregate sampling. Such regions hence define a sort of virtualised space that is "fluid", since its structure adapts in response to pressure forces exerted by the underlying phenomenon. We provide an adaptive sampling algorithm in the field-based coordination framework, and prove it is self-stabilising and locally optimal. Finally, we verify by simulation that the proposed algorithm effectively carries out a spatially adaptive sampling while maintaining a tuneable trade-off between accuracy and efficiency.
A digital twin framework for civil engineering structures
Torzoni, Matteo, Tezzele, Marco, Mariani, Stefano, Manzoni, Andrea, Willcox, Karen E.
The digital twin concept represents an appealing opportunity to advance condition-based and predictive maintenance paradigms for civil engineering systems, thus allowing reduced lifecycle costs, increased system safety, and increased system availability. This work proposes a predictive digital twin approach to the health monitoring, maintenance, and management planning of civil engineering structures. The asset-twin coupled dynamical system is encoded employing a probabilistic graphical model, which allows all relevant sources of uncertainty to be taken into account. In particular, the time-repeating observations-to-decisions flow is modeled using a dynamic Bayesian network. Real-time structural health diagnostics are provided by assimilating sensed data with deep learning models. The digital twin state is continually updated in a sequential Bayesian inference fashion. This is then exploited to inform the optimal planning of maintenance and management actions within a dynamic decision-making framework. A preliminary offline phase involves the population of training datasets through a reduced-order numerical model and the computation of a health-dependent control policy. The strategy is assessed on two synthetic case studies, involving a cantilever beam and a railway bridge, demonstrating the dynamic decision-making capabilities of health-aware digital twins.
About Digital Twins, agents, and multiagent systems: a cross-fertilisation journey
Mariani, Stefano, Picone, Marco, Ricci, Alessandro
Digital Twins (DTs) are rapidly emerging as a fundamental brick of engineering cyber-physical systems, but their notion is still mostly bound to specific business domains (e.g. manufacturing), goals (e.g. product design), or application domains (e.g. the Internet of Things). As such, their value as general purpose engineering abstractions is yet to be fully revealed. In this paper, we relate DTs with agents and multiagent systems, as the latter are arguably the most rich abstractions available for the engineering of complex socio-technical and cyber-physical systems, and the former could both fill in some gaps in agent-oriented engineering and benefit from an agent-oriented interpretation -- in a cross-fertilisation journey.
Individual and Collective Autonomous Development
Lippi, Marco, Mariani, Stefano, Martinelli, Matteo, Zambonelli, Franco
The increasing complexity and unpredictability of many ICT scenarios let us envision that future systems will have to dynamically learn how to act and adapt to face evolving situations with little or no a priori knowledge, both at the level of individual components and at the collective level. In other words, such systems should become able to autonomously develop models of themselves and of their environment. Autonomous development includes: learning models of own capabilities; learning how to act purposefully towards the achievement of specific goals; and learning how to act collectively, i.e., accounting for the presence of others. In this paper, we introduce the vision of autonomous development in ICT systems, by framing its key concepts and by illustrating suitable application domains. Then, we overview the many research areas that are contributing or can potentially contribute to the realization of the vision, and identify some key research challenges.
Logic Programming as a Service
Calegari, Roberta, Denti, Enrico, Mariani, Stefano, Omicini, Andrea
New generations of distributed systems are opening novel perspectives for logic programming (LP): on the one hand, service-oriented architectures represent nowadays the standard approach for distributed systems engineering; on the other hand, pervasive systems mandate for situated intelligence. In this paper we introduce the notion of Logic Programming as a Service (LPaaS) as a means to address the needs of pervasive intelligent systems through logic engines exploited as a distributed service. First we define the abstract architectural model by re-interpreting classical LP notions in the new context; then we elaborate on the nature of LP interpreted as a service by describing the basic LPaaS interface. Finally, we show how LPaaS works in practice by discussing its implementation in terms of distributed tuProlog engines, accounting for basic issues such as interoperability and configurability.