Goto

Collaborating Authors

 Maria-Florina F. Balcan


Sample and Computationally Efficient Learning Algorithms under S-Concave Distributions

Neural Information Processing Systems

We provide new results for noise-tolerant and sample-efficient learning algorithms under s-concave distributions. The new class of s-concave distributions is a broad and natural generalization of log-concavity, and includes many important additional distributions, e.g., the Pareto distribution and t-distribution. This class has been studied in the context of efficient sampling, integration, and optimization, but much remains unknown about the geometry of this class of distributions and their applications in the context of learning. The challenge is that unlike the commonly used distributions in learning (uniform or more generally log-concave distributions), this broader class is not closed under the marginalization operator and many such distributions are fat-tailed. In this work, we introduce new convex geometry tools to study the properties of s-concave distributions and use these properties to provide bounds on quantities of interest to learning including the probability of disagreement between two halfspaces, disagreement outside a band, and the disagreement coefficient. We use these results to significantly generalize prior results for margin-based active learning, disagreement-based active learning, and passive learning of intersections of halfspaces. Our analysis of geometric properties of s-concave distributions might be of independent interest to optimization more broadly.


Data-Driven Clustering via Parameterized Lloyd's Families

Neural Information Processing Systems

Algorithms for clustering points in metric spaces is a long-studied area of research. Clustering has seen a multitude of work both theoretically, in understanding the approximation guarantees possible for many objective functions such as k-median and k-means clustering, and experimentally, in finding the fastest algorithms and seeding procedures for Lloyd's algorithm. The performance of a given clustering algorithm depends on the specific application at hand, and this may not be known up front. For example, a "typical instance" may vary depending on the application, and different clustering heuristics perform differently depending on the instance. In this paper, we define an infinite family of algorithms generalizing Lloyd's algorithm, with one parameter controlling the initialization procedure, and another parameter controlling the local search procedure. This family of algorithms includes the celebrated k-means++ algorithm, as well as the classic farthest-first traversal algorithm. We design efficient learning algorithms which receive samples from an application-specific distribution over clustering instances and learn a nearoptimal clustering algorithm from the class. We show the best parameters vary significantly across datasets such as MNIST, CIFAR, and mixtures of Gaussians. Our learned algorithms never perform worse than k-means++, and on some datasets we see significant improvements.


Adaptive Gradient-Based Meta-Learning Methods

Neural Information Processing Systems

We build a theoretical framework for designing and understanding practical metalearning methods that integrates sophisticated formalizations of task-similarity with the extensive literature on online convex optimization and sequential prediction algorithms. Our approach enables the task-similarity to be learned adaptively, provides sharper transfer-risk bounds in the setting of statistical learning-to-learn, and leads to straightforward derivations of average-case regret bounds for efficient algorithms in settings where the task-environment changes dynamically or the tasks share a certain geometric structure. We use our theory to modify several popular meta-learning algorithms and improve their meta-test-time performance on standard problems in few-shot learning and federated learning.



Noise-Tolerant Life-Long Matrix Completion via Adaptive Sampling

Neural Information Processing Systems

We study the problem of recovering an incomplete m n matrix of rank r with columns arriving online over time. This is known as the problem of life-long matrix completion, and is widely applied to recommendation system, computer vision, system identification, etc. The challenge is to design provable algorithms tolerant to a large amount of noises, with small sample complexity. In this work, we give algorithms achieving strong guarantee under two realistic noise models. In bounded deterministic noise, an adversary can add any bounded yet unstructured noise to each column. For this problem, we present an algorithm that returns a matrix of a small error, with sample complexity almost as small as the best prior results in the noiseless case.


Sample Complexity of Automated Mechanism Design

Neural Information Processing Systems

The design of revenue-maximizing combinatorial auctions, i.e. multi-item auctions over bundles of goods, is one of the most fundamental problems in computational economics, unsolved even for two bidders and two items for sale. In the traditional economic models, it is assumed that the bidders' valuations are drawn from an underlying distribution and that the auction designer has perfect knowledge of this distribution. Despite this strong and oftentimes unrealistic assumption, it is remarkable that the revenue-maximizing combinatorial auction remains unknown. In recent years, automated mechanism design has emerged as one of the most practical and promising approaches to designing high-revenue combinatorial auctions. The most scalable automated mechanism design algorithms take as input samples from the bidders' valuation distribution and then search for a high-revenue auction in a rich auction class. In this work, we provide the first sample complexity analysis for the standard hierarchy of deterministic combinatorial auction classes used in automated mechanism design. In particular, we provide tight sample complexity bounds on the number of samples needed to guarantee that the empirical revenue of the designed mechanism on the samples is close to its expected revenue on the underlying, unknown distribution over bidder valuations, for each of the auction classes in the hierarchy. In addition to helping set automated mechanism design on firm foundations, our results also push the boundaries of learning theory. In particular, the hypothesis functions used in our contexts are defined through multi-stage combinatorial optimization procedures, rather than simple decision boundaries, as are common in machine learning.


Sample and Computationally Efficient Learning Algorithms under S-Concave Distributions

Neural Information Processing Systems

We provide new results for noise-tolerant and sample-efficient learning algorithms under s-concave distributions. The new class of s-concave distributions is a broad and natural generalization of log-concavity, and includes many important additional distributions, e.g., the Pareto distribution and t-distribution. This class has been studied in the context of efficient sampling, integration, and optimization, but much remains unknown about the geometry of this class of distributions and their applications in the context of learning. The challenge is that unlike the commonly used distributions in learning (uniform or more generally log-concave distributions), this broader class is not closed under the marginalization operator and many such distributions are fat-tailed. In this work, we introduce new convex geometry tools to study the properties of s-concave distributions and use these properties to provide bounds on quantities of interest to learning including the probability of disagreement between two halfspaces, disagreement outside a band, and the disagreement coefficient. We use these results to significantly generalize prior results for margin-based active learning, disagreement-based active learning, and passive learning of intersections of halfspaces. Our analysis of geometric properties of s-concave distributions might be of independent interest to optimization more broadly.