Marchant, Neil G.
Adaptive Data Analysis for Growing Data
Marchant, Neil G., Rubinstein, Benjamin I. P.
Reuse of data in adaptive workflows poses challenges regarding overfitting and the statistical validity of results. Previous work has demonstrated that interacting with data via differentially private algorithms can mitigate overfitting, achieving worst-case generalization guarantees with asymptotically optimal data requirements. However, such past work assumes data is static and cannot accommodate situations where data grows over time. In this paper we address this gap, presenting the first generalization bounds for adaptive analysis in the dynamic data setting. We allow the analyst to adaptively schedule their queries conditioned on the current size of the data, in addition to previous queries and responses. We also incorporate time-varying empirical accuracy bounds and mechanisms, allowing for tighter guarantees as data accumulates. In a batched query setting, the asymptotic data requirements of our bound grows with the square-root of the number of adaptive queries, matching prior works' improvement over data splitting for the static setting. We instantiate our bound for statistical queries with the clipped Gaussian mechanism, where it empirically outperforms baselines composed from static bounds.
RS-Del: Edit Distance Robustness Certificates for Sequence Classifiers via Randomized Deletion
Huang, Zhuoqun, Marchant, Neil G., Lucas, Keane, Bauer, Lujo, Ohrimenko, Olga, Rubinstein, Benjamin I. P.
Randomized smoothing is a leading approach for constructing classifiers that are certifiably robust against adversarial examples. Existing work on randomized smoothing has focused on classifiers with continuous inputs, such as images, where $\ell_p$-norm bounded adversaries are commonly studied. However, there has been limited work for classifiers with discrete or variable-size inputs, such as for source code, which require different threat models and smoothing mechanisms. In this work, we adapt randomized smoothing for discrete sequence classifiers to provide certified robustness against edit distance-bounded adversaries. Our proposed smoothing mechanism randomized deletion (RS-Del) applies random deletion edits, which are (perhaps surprisingly) sufficient to confer robustness against adversarial deletion, insertion and substitution edits. Our proof of certification deviates from the established Neyman-Pearson approach, which is intractable in our setting, and is instead organized around longest common subsequences. We present a case study on malware detection--a binary classification problem on byte sequences where classifier evasion is a well-established threat model. When applied to the popular MalConv malware detection model, our smoothing mechanism RS-Del achieves a certified accuracy of 91% at an edit distance radius of 128 bytes.
A general framework for label-efficient online evaluation with asymptotic guarantees
Marchant, Neil G., Rubinstein, Benjamin I. P.
Achieving statistically significant evaluation with passive sampling of test data is challenging in settings such as extreme classification and record linkage, where significant class imbalance is prevalent. Adaptive importance sampling focuses labeling on informative regions of the instance space, however it breaks data independence assumptions - commonly required for asymptotic guarantees that assure estimates approximate population performance and provide practical confidence intervals. In this paper we develop an adaptive importance sampling framework for supervised evaluation that defines a sequence of proposal distributions given a user-defined discriminative model of p(y|x) and a generalized performance measure to evaluate. Under verifiable conditions on the model and performance measure, we establish strong consistency and a (martingale) central limit theorem for resulting performance estimates. We instantiate our framework with worked examples given stochastic or deterministic label oracle access. Both examples leverage Dirichlet-tree models for practical online evaluation, with the deterministic case achieving asymptotic optimality. Experiments on seven datasets demonstrate an average mean-squared error superior to state-of-the-art samplers on fixed label budgets.
d-blink: Distributed End-to-End Bayesian Entity Resolution
Marchant, Neil G., Steorts, Rebecca C., Kaplan, Andee, Rubinstein, Benjamin I. P., Elazar, Daniel N.
Entity resolution (ER) (record linkage or de-duplication) is the process of merging together noisy databases, often in the absence of a unique identifier. A major advancement in ER methodology has been the application of Bayesian generative models. Such models provide a natural framework for clustering records to unobserved (latent) entities, while providing exact uncertainty quantification and tight performance bounds. Despite these advancements, existing models do not scale to realistically-sized databases (larger than 1000 records) and they do not incorporate probabilistic blocking. In this paper, we propose "distributed Bayesian linkage" or d-blink -- the first scalable and distributed end-to-end Bayesian model for ER, which propagates uncertainty in blocking, matching and merging. We make several novel contributions, including: (i) incorporating probabilistic blocking directly into the model through auxiliary partitions; (ii) support for missing values; (iii) a partially-collapsed Gibbs sampler; and (iv) a novel perturbation sampling algorithm (leveraging the Vose-Alias method) that enables fast updates of the entity attributes. Finally, we conduct experiments on five data sets which show that d-blink can achieve significant efficiency gains -- in excess of 300$\times$ -- when compared to existing non-distributed methods.
In Search of an Entity Resolution OASIS: Optimal Asymptotic Sequential Importance Sampling
Marchant, Neil G., Rubinstein, Benjamin I. P.
Entity resolution (ER) presents unique challenges for evaluation methodology. While crowdsourcing platforms acquire ground truth, sound approaches to sampling must drive labelling efforts. In ER, extreme class imbalance between matching and non-matching records can lead to enormous labelling requirements when seeking statistically consistent estimates for rigorous evaluation. This paper addresses this important challenge with the OASIS algorithm: a sampler and F-measure estimator for ER evaluation. OASIS draws samples from a (biased) instrumental distribution, chosen to ensure estimators with optimal asymptotic variance. As new labels are collected OASIS updates this instrumental distribution via a Bayesian latent variable model of the annotator oracle, to quickly focus on unlabelled items providing more information. We prove that resulting estimates of F-measure, precision, recall converge to the true population values. Thorough comparisons of sampling methods on a variety of ER datasets demonstrate significant labelling reductions of up to 83% without loss to estimate accuracy.