Marchand, Mario
Tighter Risk Bounds for Mixtures of Experts
Akretche, Wissam, LeBlanc, Frédéric, Marchand, Mario
In this work, we provide upper bounds on the risk of mixtures of experts by imposing local differential privacy (LDP) on their gating mechanism. These theoretical guarantees are tailored to mixtures of experts that utilize the one-out-of-$n$ gating mechanism, as opposed to the conventional $n$-out-of-$n$ mechanism. The bounds exhibit logarithmic dependence on the number of experts, and encapsulate the dependence on the gating mechanism in the LDP parameter, making them significantly tighter than existing bounds, under reasonable conditions. Experimental results support our theory, demonstrating that our approach enhances the generalization ability of mixtures of experts and validating the feasibility of imposing LDP on the gating mechanism.
Partial Order in Chaos: Consensus on Feature Attributions in the Rashomon Set
Laberge, Gabriel, Pequignot, Yann, Mathieu, Alexandre, Khomh, Foutse, Marchand, Mario
Post-hoc global/local feature attribution methods are progressively being employed to understand the decisions of complex machine learning models. Yet, because of limited amounts of data, it is possible to obtain a diversity of models with good empirical performance but that provide very different explanations for the same prediction, making it hard to derive insight from them. In this work, instead of aiming at reducing the under-specification of model explanations, we fully embrace it and extract logical statements about feature attributions that are consistent across all models with good empirical performance (i.e. all models in the Rashomon Set). We show that partial orders of local/global feature importance arise from this methodology enabling more nuanced interpretations by allowing pairs of features to be incomparable when there is no consensus on their relative importance. We prove that every relation among features present in these partial orders also holds in the rankings provided by existing approaches. Finally, we present three use cases employing hypothesis spaces with tractable Rashomon Sets (Additive models, Kernel Ridge, and Random Forests) and show that partial orders allow one to extract consistent local and global interpretations of models despite their under-specification.
Algorithm-Dependent Bounds for Representation Learning of Multi-Source Domain Adaptation
Chen, Qi, Marchand, Mario
We use information-theoretic tools to derive a novel analysis of Multi-source Domain Adaptation (MDA) from the representation learning perspective. Concretely, we study joint distribution alignment for supervised MDA with few target labels and unsupervised MDA with pseudo labels, where the latter is relatively hard and less commonly studied. We further provide algorithm-dependent generalization bounds for these two settings, where the generalization is characterized by the mutual information between the parameters and the data. Then we propose a novel deep MDA algorithm, implicitly addressing the target shift through joint alignment. Finally, the mutual information bounds are extended to this algorithm providing a non-vacuous gradient-norm estimation. The proposed algorithm has comparable performance to the state-of-the-art on target-shifted MDA benchmark with improved memory efficiency.
Generalization Bounds For Meta-Learning: An Information-Theoretic Analysis
Chen, Qi, Shui, Changjian, Marchand, Mario
We derive a novel information-theoretic analysis of the generalization property of meta-learning algorithms. Concretely, our analysis proposes a generic understanding of both the conventional learning-to-learn framework and the modern model-agnostic meta-learning (MAML) algorithms. Moreover, we provide a data-dependent generalization bound for a stochastic variant of MAML, which is non-vacuous for deep few-shot learning. As compared to previous bounds that depend on the square norm of gradients, empirical validations on both simulated data and a well-known few-shot benchmark show that our bound is orders of magnitude tighter in most situations.
Adaptive Deep Kernel Learning
Tossou, Prudencio, Dura, Basile, Laviolette, Francois, Marchand, Mario, Lacoste, Alexandre
Deep kernel learning provides an elegant and principled framework for combining the structural properties of deep learning algorithms with the flexibility of kernel methods. By means of a deep neural network, it consists of learning a kernel operator which is combined with a differentiable kernel algorithm for inference. While previous work within this framework has mostly explored learning a single kernel for large datasets, we focus herein on learning a kernel family for a variety of tasks in few-shot regression settings. Compared to single deep kernel learning, our novel algorithm permits finding the appropriate kernel for each task during inference, rather than using the same for all tasks. As such, our algorithm performs more effectively with complex task distributions in few-shot learning, which we demonstrate by benchmarking against existing state-of-the-art algorithms using real-world, few-shot regression tasks related to drug discovery.
Large scale modeling of antimicrobial resistance with interpretable classifiers
Drouin, Alexandre, Raymond, Frédéric, St-Pierre, Gaël Letarte, Marchand, Mario, Corbeil, Jacques, Laviolette, François
Antimicrobial resistance is an important public health concern that has implications in the practice of medicine worldwide. Accurately predicting resistance phenotypes from genome sequences shows great promise in promoting better use of antimicrobial agents, by determining which antibiotics are likely to be effective in specific clinical cases. In healthcare, this would allow for the design of treatment plans tailored for specific individuals, likely resulting in better clinical outcomes for patients with bacterial infections. In this work, we present the recent work of Drouin et al. (2016) on using Set Covering Machines to learn highly interpretable models of antibiotic resistance and complement it by providing a large scale application of their method to the entire PATRIC database. We report prediction results for 36 new datasets and present the Kover AMR platform, a new web-based tool allowing the visualization and interpretation of the generated models.
Domain-Adversarial Training of Neural Networks
Ganin, Yaroslav, Ustinova, Evgeniya, Ajakan, Hana, Germain, Pascal, Larochelle, Hugo, Laviolette, François, Marchand, Mario, Lempitsky, Victor
We introduce a new representation learning approach for domain adaptation, in which data at training and test time come from similar but different distributions. Our approach is directly inspired by the theory on domain adaptation suggesting that, for effective domain transfer to be achieved, predictions must be made based on features that cannot discriminate between the training (source) and test (target) domains. The approach implements this idea in the context of neural network architectures that are trained on labeled data from the source domain and unlabeled data from the target domain (no labeled target-domain data is necessary). As the training progresses, the approach promotes the emergence of features that are (i) discriminative for the main learning task on the source domain and (ii) indiscriminate with respect to the shift between the domains. We show that this adaptation behaviour can be achieved in almost any feed-forward model by augmenting it with few standard layers and a new gradient reversal layer. The resulting augmented architecture can be trained using standard backpropagation and stochastic gradient descent, and can thus be implemented with little effort using any of the deep learning packages. We demonstrate the success of our approach for two distinct classification problems (document sentiment analysis and image classification), where state-of-the-art domain adaptation performance on standard benchmarks is achieved. We also validate the approach for descriptor learning task in the context of person re-identification application.
Risk Bounds for the Majority Vote: From a PAC-Bayesian Analysis to a Learning Algorithm
Germain, Pascal, Lacasse, Alexandre, Laviolette, François, Marchand, Mario, Roy, Jean-Francis
We propose an extensive analysis of the behavior of majority votes in binary classification. In particular, we introduce a risk bound for majority votes, called the C-bound, that takes into account the average quality of the voters and their average disagreement. We also propose an extensive PAC-Bayesian analysis that shows how the C-bound can be estimated from various observations contained in the training data. The analysis intends to be self-contained and can be used as introductory material to PAC-Bayesian statistical learning theory. It starts from a general PAC-Bayesian perspective and ends with uncommon PAC-Bayesian bounds. Some of these bounds contain no Kullback-Leibler divergence and others allow kernel functions to be used as voters (via the sample compression setting). Finally, out of the analysis, we propose the MinCq learning algorithm that basically minimizes the C-bound. MinCq reduces to a simple quadratic program. Aside from being theoretically grounded, MinCq achieves state-of-the-art performance, as shown in our extensive empirical comparison with both AdaBoost and the Support Vector Machine.
Greedy Biomarker Discovery in the Genome with Applications to Antimicrobial Resistance
Drouin, Alexandre, Giguère, Sébastien, Déraspe, Maxime, Laviolette, François, Marchand, Mario, Corbeil, Jacques
The Set Covering Machine (SCM) is a greedy learning algorithm that produces sparse classifiers. We extend the SCM for datasets that contain a huge number of features. The whole genetic material of living organisms is an example of such a case, where the number of feature exceeds 10^7. Three human pathogens were used to evaluate the performance of the SCM at predicting antimicrobial resistance. Our results show that the SCM compares favorably in terms of sparsity and accuracy against L1 and L2 regularized Support Vector Machines and CART decision trees. Moreover, the SCM was the only algorithm that could consider the full feature space. For all other algorithms, the latter had to be filtered as a preprocessing step.
Domain-Adversarial Neural Networks
Ajakan, Hana, Germain, Pascal, Larochelle, Hugo, Laviolette, François, Marchand, Mario
We introduce a new representation learning algorithm suited to the context of domain adaptation, in which data at training and test time come from similar but different distributions. Our algorithm is directly inspired by theory on domain adaptation suggesting that, for effective domain transfer to be achieved, predictions must be made based on a data representation that cannot discriminate between the training (source) and test (target) domains. We propose a training objective that implements this idea in the context of a neural network, whose hidden layer is trained to be predictive of the classification task, but uninformative as to the domain of the input. Our experiments on a sentiment analysis classification benchmark, where the target domain data available at training time is unlabeled, show that our neural network for domain adaption algorithm has better performance than either a standard neural network or an SVM, even if trained on input features extracted with the state-of-the-art marginalized stacked denoising autoencoders of Chen et al. (2012).