Goto

Collaborating Authors

 Marcel, Sébastien


HintsOfTruth: A Multimodal Checkworthiness Detection Dataset with Real and Synthetic Claims

arXiv.org Artificial Intelligence

Misinformation can be countered with fact-checking, but the process is costly and slow. Identifying checkworthy claims is the first step, where automation can help scale fact-checkers' efforts. However, detection methods struggle with content that is 1) multimodal, 2) from diverse domains, and 3) synthetic. We introduce HintsOfTruth, a public dataset for multimodal checkworthiness detection with $27$K real-world and synthetic image/claim pairs. The mix of real and synthetic data makes this dataset unique and ideal for benchmarking detection methods. We compare fine-tuned and prompted Large Language Models (LLMs). We find that well-configured lightweight text-based encoders perform comparably to multimodal models but the first only focus on identifying non-claim-like content. Multimodal LLMs can be more accurate but come at a significant computational cost, making them impractical for large-scale applications. When faced with synthetic data, multimodal models perform more robustly


Second FRCSyn-onGoing: Winning Solutions and Post-Challenge Analysis to Improve Face Recognition with Synthetic Data

arXiv.org Artificial Intelligence

Synthetic data is gaining increasing popularity for face recognition technologies, mainly due to the privacy concerns and challenges associated with obtaining real data, including diverse scenarios, quality, and demographic groups, among others. It also offers some advantages over real data, such as the large amount of data that can be generated or the ability to customize it to adapt to specific problem-solving needs. To effectively use such data, face recognition models should also be specifically designed to exploit synthetic data to its fullest potential. In order to promote the proposal of novel Generative AI methods and synthetic data, and investigate the application of synthetic data to better train face recognition systems, we introduce the 2nd FRCSyn-onGoing challenge, based on the 2nd Face Recognition Challenge in the Era of Synthetic Data (FRCSyn), originally launched at CVPR 2024. This is an ongoing challenge that provides researchers with an accessible platform to benchmark i) the proposal of novel Generative AI methods and synthetic data, and ii) novel face recognition systems that are specifically proposed to take advantage of synthetic data. We focus on exploring the use of synthetic data both individually and in combination with real data to solve current challenges in face recognition such as demographic bias, domain adaptation, and performance constraints in demanding situations, such as age disparities between training and testing, changes in the pose, or occlusions. Very interesting findings are obtained in this second edition, including a direct comparison with the first one, in which synthetic databases were restricted to DCFace and GANDiffFace.


Evaluating the Effectiveness of Attack-Agnostic Features for Morphing Attack Detection

arXiv.org Artificial Intelligence

Morphing attacks have diversified significantly over the past years, with new methods based on generative adversarial networks (GANs) and diffusion models posing substantial threats to face recognition systems. Recent research has demonstrated the effectiveness of features extracted from large vision models pretrained on bonafide data only (attack-agnostic features) for detecting deep generative images. Building on this, we investigate the potential of these image representations for morphing attack detection (MAD). We develop supervised detectors by training a simple binary linear SVM on the extracted features and one-class detectors by modeling the distribution of bonafide features with a Gaussian Mixture Model (GMM). Our method is evaluated across a comprehensive set of attacks and various scenarios, including generalization to unseen attacks, different source datasets, and print-scan data. Our results indicate that attack-agnostic features can effectively detect morphing attacks, outperforming traditional supervised and one-class detectors from the literature in most scenarios. Additionally, we provide insights into the strengths and limitations of each considered representation and discuss potential future research directions to further enhance the robustness and generalizability of our approach.


Second Edition FRCSyn Challenge at CVPR 2024: Face Recognition Challenge in the Era of Synthetic Data

arXiv.org Artificial Intelligence

Synthetic data is gaining increasing relevance for training machine learning models. This is mainly motivated due to several factors such as the lack of real data and intra-class variability, time and errors produced in manual labeling, and in some cases privacy concerns, among others. This paper presents an overview of the 2nd edition of the Face Recognition Challenge in the Era of Synthetic Data (FRCSyn) organized at CVPR 2024. FRCSyn aims to investigate the use of synthetic data in face recognition to address current technological limitations, including data privacy concerns, demographic biases, generalization to novel scenarios, and performance constraints in challenging situations such as aging, pose variations, and occlusions. Unlike the 1st edition, in which synthetic data from DCFace and GANDiffFace methods was only allowed to train face recognition systems, in this 2nd edition we propose new sub-tasks that allow participants to explore novel face generative methods. The outcomes of the 2nd FRCSyn Challenge, along with the proposed experimental protocol and benchmarking contribute significantly to the application of synthetic data to face recognition.


Deep Privacy Funnel Model: From a Discriminative to a Generative Approach with an Application to Face Recognition

arXiv.org Artificial Intelligence

In this study, we apply the information-theoretic Privacy Funnel (PF) model to the domain of face recognition, developing a novel method for privacy-preserving representation learning within an end-to-end training framework. Our approach addresses the trade-off between obfuscation and utility in data protection, quantified through logarithmic loss, also known as self-information loss. This research provides a foundational exploration into the integration of information-theoretic privacy principles with representation learning, focusing specifically on the face recognition systems. We particularly highlight the adaptability of our framework with recent advancements in face recognition networks, such as AdaFace and ArcFace. In addition, we introduce the Generative Privacy Funnel ($\mathsf{GenPF}$) model, a paradigm that extends beyond the traditional scope of the PF model, referred to as the Discriminative Privacy Funnel ($\mathsf{DisPF}$). This $\mathsf{GenPF}$ model brings new perspectives on data generation methods with estimation-theoretic and information-theoretic privacy guarantees. Complementing these developments, we also present the deep variational PF (DVPF) model. This model proposes a tractable variational bound for measuring information leakage, enhancing the understanding of privacy preservation challenges in deep representation learning. The DVPF model, associated with both $\mathsf{DisPF}$ and $\mathsf{GenPF}$ models, sheds light on connections with various generative models such as Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), and Diffusion models. Complementing our theoretical contributions, we release a reproducible PyTorch package, facilitating further exploration and application of these privacy-preserving methodologies in face recognition systems.


Approximating Optimal Morphing Attacks using Template Inversion

arXiv.org Artificial Intelligence

Recent works have demonstrated the feasibility of inverting face recognition systems, enabling to recover convincing face images using only their embeddings. We leverage such template inversion models to develop a novel type ofdeep morphing attack based on inverting a theoretical optimal morph embedding, which is obtained as an average of the face embeddings of source images. We experiment with two variants of this approach: the first one exploits a fully self-contained embedding-to-image inversion model, while the second leverages the synthesis network of a pretrained StyleGAN network for increased morph realism. We generate morphing attacks from several source datasets and study the effectiveness of those attacks against several face recognition networks. We showcase that our method can compete with and regularly beat the previous state of the art for deep-learning based morph generation in terms of effectiveness, both in white-box and black-box attack scenarios, and is additionally much faster to run. We hope this might facilitate the development of large scale deep morph datasets for training detection models.


Deep Variational Privacy Funnel: General Modeling with Applications in Face Recognition

arXiv.org Artificial Intelligence

In this study, we harness the information-theoretic Privacy Funnel (PF) model to develop a method for privacy-preserving representation learning using an end-to-end training framework. We rigorously address the trade-off between obfuscation and utility. Both are quantified through the logarithmic loss, a measure also recognized as self-information loss. This exploration deepens the interplay between information-theoretic privacy and representation learning, offering substantive insights into data protection mechanisms for both discriminative and generative models. Importantly, we apply our model to state-of-the-art face recognition systems. The model demonstrates adaptability across diverse inputs, from raw facial images to both derived or refined embeddings, and is competent in tasks such as classification, reconstruction, and generation.


The Age of Synthetic Realities: Challenges and Opportunities

arXiv.org Artificial Intelligence

Synthetic realities are digital creations or augmentations that are contextually generated through the use of Artificial Intelligence (AI) methods, leveraging extensive amounts of data to construct new narratives or realities, regardless of the intent to deceive. In this paper, we delve into the concept of synthetic realities and their implications for Digital Forensics and society at large within the rapidly advancing field of AI. We highlight the crucial need for the development of forensic techniques capable of identifying harmful synthetic creations and distinguishing them from reality. This is especially important in scenarios involving the creation and dissemination of fake news, disinformation, and misinformation. Our focus extends to various forms of media, such as images, videos, audio, and text, as we examine how synthetic realities are crafted and explore approaches to detecting these malicious creations. Additionally, we shed light on the key research challenges that lie ahead in this area. This study is of paramount importance due to the rapid progress of AI generative techniques and their impact on the fundamental principles of Forensic Science.