Goto

Collaborating Authors

 Marathe, Kalyani


DataComp: In search of the next generation of multimodal datasets

arXiv.org Artificial Intelligence

Multimodal datasets are a critical component in recent breakthroughs such as Stable Diffusion and GPT-4, yet their design does not receive the same research attention as model architectures or training algorithms. To address this shortcoming in the ML ecosystem, we introduce DataComp, a testbed for dataset experiments centered around a new candidate pool of 12.8 billion image-text pairs from Common Crawl. Participants in our benchmark design new filtering techniques or curate new data sources and then evaluate their new dataset by running our standardized CLIP training code and testing the resulting model on 38 downstream test sets. Our benchmark consists of multiple compute scales spanning four orders of magnitude, which enables the study of scaling trends and makes the benchmark accessible to researchers with varying resources. Our baseline experiments show that the DataComp workflow leads to better training sets. In particular, our best baseline, DataComp-1B, enables training a CLIP ViT-L/14 from scratch to 79.2% zero-shot accuracy on ImageNet, outperforming OpenAI's CLIP ViT-L/14 by 3.7 percentage points while using the same training procedure and compute. We release DataComp and all accompanying code at www.datacomp.ai.


MIMIC: Masked Image Modeling with Image Correspondences

arXiv.org Artificial Intelligence

Dense pixel-specific representation learning at scale has been bottlenecked due to the unavailability of large-scale multi-view datasets. Current methods for building effective pretraining datasets heavily rely on annotated 3D meshes, point clouds, and camera parameters from simulated environments, preventing them from building datasets from real-world data sources where such metadata is lacking. We propose a pretraining dataset-curation approach that does not require any additional annotations. Our method allows us to generate multi-view datasets from both real-world videos and simulated environments at scale. Specifically, we experiment with two scales: MIMIC-1M with 1.3M and MIMIC-3M with 3.1M multi-view image pairs. We train multiple models with different masked image modeling objectives to showcase the following findings: Representations trained on our automatically generated MIMIC-3M outperform those learned from expensive crowdsourced datasets (ImageNet-1K) and those learned from synthetic environments (MULTIVIEW-HABITAT) on two dense geometric tasks: depth estimation on NYUv2 (1.7%), and surface normals estimation on Taskonomy (2.05%). For dense tasks which also require object understanding, we outperform MULTIVIEW-HABITAT, on semantic segmentation on ADE20K (3.89%), pose estimation on MSCOCO (9.4%), and reduce the gap with models pre-trained on the object-centric expensive ImageNet-1K. We outperform even when the representations are frozen, and when downstream training data is limited to few-shot. Larger dataset (MIMIC-3M) significantly improves performance, which is promising since our curation method can arbitrarily scale to produce even larger datasets. MIMIC code, dataset, and pretrained models are open-sourced at https://github.com/RAIVNLab/MIMIC.


OpenFlamingo: An Open-Source Framework for Training Large Autoregressive Vision-Language Models

arXiv.org Artificial Intelligence

We introduce OpenFlamingo, a family of autoregressive vision-language models ranging from 3B to 9B parameters. OpenFlamingo is an ongoing effort to produce an open-source replication of DeepMind's Flamingo models. On seven vision-language datasets, OpenFlamingo models average between 80 - 89% of corresponding Flamingo performance. This technical report describes our models, training data, hyperparameters, and evaluation suite. We share our models and code at https://github.com/mlfoundations/open_flamingo.